Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Takuji Kubota x
  • Precipitation Retrieval Algorithms for GPM x
  • Refine by Access: All Content x
Clear All Modify Search
Jun Awaka
,
Minda Le
,
V. Chandrasekar
,
Naofumi Yoshida
,
Tomohiko Higashiuwatoko
,
Takuji Kubota
, and
Toshio Iguchi

Abstract

The Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) algorithms consist of modules. This paper describes version 4 (V4) of GPM DPR level 2 (L2) classification (CSF) modules, which consist of two single-frequency (SF) modules—that is, Ku-only and Ka-only modules—and a dual-frequency (DF) module. Each CSF module detects bright band (BB) and classifies rain into three major types, that is, stratiform, convective, and other. The Ku-only and Ka-only CSF modules use algorithms that are similar to the Tropical Rainfall Measuring Mission (TRMM) rain type classification algorithm 2A23. The DF CSF module uses a new method called the measured dual-frequency ratio (DFRm) method for the rain type classification and the detection of BB. It is shown that the Ku-only CSF module and the DF CSF module produce almost indistinguishable rain type counts in a statistical sense. It is also shown that the DFRm method in the DF CSF module improves the detection of BB.

Full access
Takuji Kubota
,
Toshio Iguchi
,
Masahiro Kojima
,
Liang Liao
,
Takeshi Masaki
,
Hiroshi Hanado
,
Robert Meneghini
, and
Riko Oki

Abstract

A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.

The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

Full access
Takuji Kubota
,
Shinta Seto
,
Masaki Satoh
,
Tomoe Nasuno
,
Toshio Iguchi
,
Takeshi Masaki
,
John M. Kwiatkowski
, and
Riko Oki

Abstract

An assumption related to clouds is one of uncertain factors in precipitation retrievals by the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory. While an attenuation due to cloud ice is negligibly small for Ku and Ka bands, attenuation by cloud liquid water is larger in the Ka band and estimating precipitation intensity with high accuracy from Ka-band observations can require developing a method to estimate the attenuation due to cloud liquid water content (CLWC). This paper describes a CLWC database used in the DPR level-2 algorithm for the GPM V06A product. In the algorithm, the CLWC value is assumed using the database with inputs of precipitation-related variables, temperature, and geolocation information. A calculation of the database was made using the 3.5-km-mesh global atmospheric simulation derived from the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) global cloud-system-resolving model. Impacts of current CLWC assumptions for surface precipitation estimates were evaluated by comparisons of precipitation retrieval results between default values and 0 mg m−3 of the CLWC. The impacts were quantified by the normalized mean absolute difference (NMAD) and the NMAD values showed 2.3% for the Ku, 9.9% for the Ka, and 6.5% for the dual-frequency algorithms in global averages, while they were larger in the tropics than in high latitudes. Effects of the precipitation estimates from the CLWC assumption were examined further in terms of retrieval processes affected by the CLWC assumption. This study emphasizes the CLWC assumption provided more effects on the precipitation estimates through estimating path-integrated attenuation due to rain.

Open access