Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Teddy Holt x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Ian A. Renfrew
,
G. W. K. Moore
,
Teddy R. Holt
,
Simon W. Chang
, and
Peter Guest

This report discusses the design and implementation of a specialized forecasting system that was set up to support the observational component of the Labrador Sea Deep Convection Experiment. This ongoing experiment is a multidisciplinary program of observations, theory, and modeling aimed at improving our knowledge of the deep convection process in the ocean, and the air–sea interaction that forces it. The observational part of the program was centered around a cruise of the R/V Knorr during winter 1997, as well as several complementary meteorological research flights. To aid the planning of ship and aircraft operations a specially tailored mesoscale model was run over the Labrador Sea, with the model output postprocessed and transferred to a remote field base. The benefits of using a warm-start analysis cycle in the model are discussed. The utility of the forecasting system is illustrated through a description of the flight planning process for several cases. The forecasts proved to be invaluable both in ship operations and in putting the aircraft in the right place at the right time. In writing this narrative the authors hope to encourage the use of similar forecasting systems in the support of future field programs, something that is becoming increasingly possible with the rise in real-time numerical weather prediction.

Full access
Wendell A. Nuss
,
John ML Bane
,
William T. Thompson
,
Teddy Holt
,
Clive E. Dorman
,
F. Martin Ralph
,
Richard Rotunno
,
Joseph B. Klemp
,
William C. Skamarock
,
Roger M. Samelson
,
Audrey M. Rogerson
,
Chris Reason
, and
Peter Jackson

Coastally trapped wind reversals along the U.S. west coast, which are often accompanied by a northward surge of fog or stratus, are an important warm-season forecast problem due to their impact on coastal maritime activities and airport operations. Previous studies identified several possible dynamic mechanisms that could be responsible for producing these events, yet observational and modeling limitations at the time left these competing interpretations open for debate. In an effort to improve our physical understanding, and ultimately the prediction, of these events, the Office of Naval Research sponsored an Accelerated Research Initiative in Coastal Meteorology during the years 1993–98 to study these and other related coastal meteorological phenomena. This effort included two field programs to study coastally trapped disturbances as well as numerous modeling studies to explore key dynamic mechanisms. This paper describes the various efforts that occurred under this program to provide an advancement in our understanding of these disturbances. While not all issues have been solved, the synoptic and mesoscale aspects of these events are considerably better understood.

Full access
David P. Rogers
,
Clive E. Dorman
,
Kathleen A. Edwards
,
Ian M. Brooks
,
W. Kendall Melville
,
Stephen D. Burk
,
William T. Thompson
,
Teddy Holt
,
Linda M. Ström
,
Michael Tjernström
,
Branko Grisogono
,
John M. Bane
,
Wendell A. Nuss
,
Bruce M. Morley
, and
Allen J. Schanot

Some of the highlights of an experiment designed to study coastal atmospheric phenomena along the California coast (Coastal Waves 1996 experiment) are described. This study was designed to address several problems, including the cross-shore variability and turbulent structure of the marine boundary layer, the influence of the coast on the development of the marine layer and clouds, the ageostrophy of the flow, the dynamics of trapped events, the parameterization of surface fluxes, and the supercriticality of the marine layer.

Based in Monterey, California, the National Center for Atmospheric Research (NCAR) C-130 Hercules and the University of North Carolina Piper Seneca obtained a comprehensive set of measurements on the structure of the marine layer. The study focused on the effects of prominent topographic features on the wind. Downstream of capes and points, narrow bands of high winds are frequently encountered. The NCAR-designed Scanning Aerosol Backscatter Lidar (SABL) provided a unique opportunity to connect changes in the depth of the boundary layer with specific features in the dynamics of the flow field.

An integral part of the experiment was the use of numerical models as forecast and diagnostic tools. The Naval Research Laboratory's Coupled Ocean Atmosphere Model System (COAMPS) provided high-resolution forecasts of the wind field in the vicinity of capes and points, which aided the deployment of the aircraft. Subsequently, this model and the MIUU (University of Uppsala) numerical model were used to support the analysis of the field data.

These are some of the most comprehensive measurements of the topographically forced marine layer that have been collected. SABL proved to be an exceptionally useful tool to resolve the small-scale structure of the boundary layer and, combined with in situ turbulence measurements, provides new insight into the structure of the marine atmosphere. Measurements were made sufficiently far offshore to distinguish between the coastal and open ocean effects. COAMPS proved to be an excellent forecast tool and both it and the MIUU model are integral parts of the ongoing analysis. The results highlight the large spatial variability that occurs directly in response to topographic effects. Routine measurements are insufficient to resolve this variability. Numerical weather prediction model boundary conditions cannot properly define the forecast system and often underestimate the wind speed and surface wave conditions in the nearshore region.

This study was a collaborative effort between the National Science Foundation, the Office of Naval Research, the Naval Research Laboratory, and the National Oceanographic and Atmospheric Administration.

Full access
Qing Wang
,
Denny P. Alappattu
,
Stephanie Billingsley
,
Byron Blomquist
,
Robert J. Burkholder
,
Adam J. Christman
,
Edward D. Creegan
,
Tony de Paolo
,
Daniel P. Eleuterio
,
Harindra Joseph S. Fernando
,
Kyle B. Franklin
,
Andrey A. Grachev
,
Tracy Haack
,
Thomas R. Hanley
,
Christopher M. Hocut
,
Teddy R. Holt
,
Kate Horgan
,
Haflidi H. Jonsson
,
Robert A. Hale
,
John A. Kalogiros
,
Djamal Khelif
,
Laura S. Leo
,
Richard J. Lind
,
Iossif Lozovatsky
,
Jesus Planella-Morato
,
Swagato Mukherjee
,
Wendell A. Nuss
,
Jonathan Pozderac
,
L. Ted Rogers
,
Ivan Savelyev
,
Dana K. Savidge
,
R. Kipp Shearman
,
Lian Shen
,
Eric Terrill
,
A. Marcela Ulate
,
Qi Wang
,
R. Travis Wendt
,
Russell Wiss
,
Roy K. Woods
,
Luyao Xu
,
Ryan T. Yamaguchi
, and
Caglar Yardim

Abstract

The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.

Full access