Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Terry L. Clark x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Terry L. Clark

Abstract

A technique for the treatment of the pressure in anelastic, nonhydrostatic terrain-following coordinates is described. It involves the use of two levels of pressure in such a manner so as to ensure that the anelastic mass-continuity equation is satisfied to round-off level. This procedure significantly improves model stability and accuracy. In the presence of modestly steep topography, the computational burden of the diagnostic elliptic pressure solver is equivalent to that of a direct solver. The two-level pressure approach is viewed as inappropriate for iterative schemes. A pressure truncation error analysis is described for calculating the second-order truncation error fields Γ associated with kinetic energy conservation for arbitrary formulations of the pressure gradient terms. The full transformed equation set is used, such that the combined effect of all of the equations contributing to the error is considered. Truncation error equations are derived for two specific formulations containing terms of Ox 2, Δy 2, Δz 2). These equations are used to validate a more general field analysis technique applicable for any numerical formulation. The kinetic energy errors that result specifically from the application of the two-level pressure technique are compared with the second-order Γ errors and are shown to be 5–10 times as small. Simulations show the stabilizing effect of the two-level pressure technique where comparisons between the two-level approach using a single block iteration and the same approach using a fully converged solution show negligible differences. The particular cases chosen were numerically unstable using a single block iteration without the two-level approach. The error analysis showed modest errors in the kinetic energy budget resulting from the numerical formulation of the pressure gradient terms with little difference between the formulations tested. The cases presented all had well-resolved topography.

Full access
Terry L. Clark and William D. Hall

Abstract

This note describes how to generate vertically stretched grids within the context of vertical nesting that are consistent with the conservative interpolation formula used by Clark and Farley. It is shown that all nested grids derive their structure directly from the parent grid, where the only flexibility allowed for nested grids is their grid ratio relative to the parent grid. Formulas are presented that can he used to analyze resulting nested grid structures, and an example showing how these formulas were used to generate relatively smooth inner meshes is described. Suggestions for further improvements in grid design are also provided.

Full access
Terry L. Clark and Thomas R. Karl

Abstract

A linear multiple regression equation was developed for each of 27 ozone monitoring sites in the north-eastern United States to forecast the next day's maximum 1 h average ozone concentration. Thirty-five prognostic meteorological variables, the climatological daily maximum surface temperature, the length and direction of 12 and 24 h backward trajectories, and three air quality variables relating to the seasonality or the upwind ozone concentrations were considered as possible predictors in each of the regression equations. Data pertaining to 244 randomly selected days formed the developmental or the dependent data set, while the data pertaining to the remaining 122 days in the months of June, July, August and September of 1975, 1976 and 1977 were used to assess the performance of the regression equations. Performance was assessed and compared to that of persistence, via statistical evaluations of site-specific forecasts. In addition, areas of the Northeast where the 1 h ozone standard was predicted to be exceeded, were compared to the areas where the standard was exceeded.

The results indicated that approximately half of the predictions generated from the independent data set were within 20% of the observations, while 77% were within 40% of the observations. A tendency for the underprediction of the maximum concentrations was noted. Overall, the regression equations performed best in forecasting the trends and patterns of the daily 1 h average ozone concentrations.

Full access
Roelof T. Bruintjes, Terry L. Clark, and William D. Hall

Abstract

A three-dimensional, time-dependent, nested-grid model is used to calculate the targeting of tracer or Seeding material over complex terrain in northern Arizona. Good agreement with measurements of SF6 tracer is reported in three case studies. Released in upwind valleys, the tracer movement and dispersion are strongly influenced by both valley flow and gravity waves excited by the mountains, as well as by changes in the synoptic flow, which can change substantially even during a single storm. The interaction between the airflow and the topography seem to be the dominant factor determining the dispersion and transport of tracer material.

Full access
Terry L. Clark, Mary Ann Jenkins, Janice Coen, and David Packham

Abstract

The object of this paper is to describe and demonstrate the necessity and utility of a coupled atmosphere-fire model: a three-dimensional, time-dependent wildfire simulation model, based on the primitive equations of motion and thermodynamics, that can represent the finescale dynamics of convective processes and capture ambient meteorological conditions.

In constructing this coupled model, model resolution for both the atmosphere and the fuel was found to be important in avoiding solutions that are physically unrealistic, and this aspect is discussed. The anelastic approximation is made in the equations of motion, and whether this dynamical framework is appropriate in its usual form for simulating wildfire behavior is also considered.

Two simple experiments-the first two in a series of numerical simulations using the coupled atmosphere- fire model-are presented here, showing the effect of wind speed on fire-line evolution in idealized and controlled conditions. The first experiment considers a 420-m-long fire line, and the second considers a 1500-m-long fire fine, where wind speeds normal to the initial fire lines vary from 1 to 5 m s−1. In agreement with some general observations, the short fire line remains stable and eventually develops a single conical shape, providing the wind speed is greater than about 1–2 m s−1, while under similar conditions, the longer fire line breaks up into multiple conical shapes. In both cases, the conical shapes are attributed to a feedback between the hot convective plumes and the near-surface convergence at the fire front. The experimental results reveal a dynamical explanation for fire-line breakup and geometry, demonstrating that the model is a valuable tool with which to investigate fire dynamics, and eventually it may be able to provide a credible scientific basis for policy decisions made by the meteorological and fire-management communities.

Full access
Terry L. Clark, Larry Radke, Janice Coen, and Don Middleton

Abstract

A good physical understanding of the initiation, propagation, and spread of crown fires remains an elusive goal for fire researchers. Although some data exist that describe the fire spread rate and some qualitative aspects of wildfire behavior, none have revealed the very small timescales and spatial scales in the convective processes that may play a key role in determining both the details and the rate of fire spread. Here such a dataset is derived using data from a prescribed burn during the International Crown Fire Modelling Experiment. A gradient-based image flow analysis scheme is presented and applied to a sequence of high-frequency (0.03 s), high-resolution (0.05–0.16 m) radiant temperature images obtained by an Inframetrics ThermaCAM instrument during an intense crown fire to derive wind fields and sensible heat flux. It was found that the motions during the crown fire had energy-containing scales on the order of meters with timescales of fractions of a second. Estimates of maximum vertical heat fluxes ranged between 0.6 and 3 MW m−2 over the 4.5-min burn, with early time periods showing surprisingly large fluxes of 3 MW m−2. Statistically determined velocity extremes, using five standard deviations from the mean, suggest that updrafts between 10 and 30 m s−1, downdrafts between −10 and −20 m s−1, and horizontal motions between 5 and 15 m s−1 frequently occurred throughout the fire.

The image flow analyses indicated a number of physical mechanisms that contribute to the fire spread rate, such as the enhanced tilting of horizontal vortices leading to counterrotating convective towers with estimated vertical vorticities of 4 to 10 s−1 rotating such that air between the towers blew in the direction of fire spread at canopy height and below. The IR imagery and flow analysis also repeatedly showed regions of thermal saturation (infrared temperature > 750°C), rising through the convection. These regions represent turbulent bursts or hairpin vortices resulting again from vortex tilting but in the sense that the tilted vortices come together to form the hairpin shape. As the vortices rise and come closer together their combined motion results in the vortex tilting forward at a relatively sharp angle, giving a hairpin shape. The development of these hairpin vortices over a range of scales may represent an important mechanism through which convection contributes to the fire spread.

A major problem with the IR data analysis is understanding fully what it is that the camera is sampling, in order physically to interpret the data. The results indicate that because of the large amount of after-burning incandescent soot associated with the crown fire, the camera was viewing only a shallow depth into the flame front, and variabilities in the distribution of hot soot particles provide the structures necessary to derive image flow fields. The coherency of the derived horizontal velocities support this view because if the IR camera were seeing deep into or through the flame front, then the effect of the ubiquitous vertical rotations almost certainly would result in random and incoherent estimates for the horizontal flow fields. Animations of the analyzed imagery showed a remarkable level of consistency in both horizontal and vertical velocity flow structures from frame to frame in support of this interpretation. The fact that the 2D image represents a distorted surface also must be taken into account when interpreting the data.

Suggestions for further field experimentation, software development, and testing are discussed in the conclusions. These suggestions may further understanding on this topic and increase the utility of this type of analysis to wildfire research.

Full access
Robert E. Eskridge, Francis S. Binkowski, J. C. R. Hunt, Terry L. Clark, and Kenneth L. Demerjian

Abstract

A finite-difference highway model is presented which uses surface layer similarity theory and a vehicle wake theory to determine the atmospheric structure along a roadway. Surface similarity is used to determine the wind profile and eddy diffusion profiles in the ambient atmosphere. The ambient atmosphere is treated as a basic-state atmosphere on which the disturbances due to vehicle wakes are added. A conservation of species equation is then solved using an upstream-flux corrected technique which insures positive concentrations. Simulation results from the highway model are compared with 58 half-hour periods of data (meteorological and SF6 tracer) taken by General Motors. The results show that the predictions of this model are closer to the observations than those of the Gaussian-formulated EPA highway model (HIWAY).

Full access