Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Terry L. Clark x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Jonathan J. Gourley, Yang Hong, Zachary L. Flamig, Ami Arthur, Robert Clark, Martin Calianno, Isabelle Ruin, Terry Ortel, Michael E. Wieczorek, Pierre-Emmanuel Kirstetter, Edward Clark, and Witold F. Krajewski

Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.

Full access
Brian A. Klimowski, Robert Becker, Eric A. Betterton, Roelof Bruintjes, Terry L. Clark, William D. Hall, Brad W. Orr, Robert A. Kropfli, Paivi Piironen, Roger F. Reinking, Dennis Sundie, and Taneil Uttal

The 1995 Arizona Program was a field experiment aimed at advancing the understanding of winter storm development in a mountainous region of central Arizona. From 15 January through 15 March 1995, a wide variety of instrumentation was operated in and around the Verde Valley southwest of Flagstaff, Arizona. These instruments included two Doppler dual-polarization radars, an instrumented airplane, a lidar, microwave and infrared radiometers, an acoustic sounder, and other surface-based facilities. Twenty-nine scientists from eight institutions took part in the program. Of special interest was the interaction of topographically induced, storm-embedded gravity waves with ambient upslope flow. It is hypothesized that these waves serve to augment the upslope-forced precipitation that falls on the mountain ridges. A major thrust of the program was to compare the observations of these winter storms to those predicted with the Clark-NCAR 3D, nonhydrostatic numerical model.

Full access
Donald R. MacGorman, W. David Rust, Terry J. Schuur, Michael I. Biggerstaff, Jerry M. Straka, Conrad L. Ziegler, Edward R. Mansell, Eric C. Bruning, Kristin M. Kuhlman, Nicole R. Lund, Nicholas S. Biermann, Clark Payne, Larry D. Carey, Paul R. Krehbiel, William Rison, Kenneth B. Eack, and William H. Beasley

The field program of the Thunderstorm Electrification and Lightning Experiment (TELEX) took place in central Oklahoma, May–June 2003 and 2004. It aimed to improve understanding of the interrelationships among microphysics, kinematics, electrification, and lightning in a broad spectrum of storms, particularly squall lines and storms whose electrical structure is inverted from the usual vertical polarity. The field program was built around two permanent facilities: the KOUN polarimetric radar and the Oklahoma Lightning Mapping Array. In addition, balloon-borne electric-field meters and radiosondes were launched together from a mobile laboratory to measure electric fields, winds, and standard thermodynamic parameters inside storms. In 2004, two mobile C-band Doppler radars provided high-resolution coordinated volume scans, and another mobile facility provided the environmental soundings required for modeling studies. Data were obtained from 22 storm episodes, including several small isolated thunderstorms, mesoscale convective systems, and supercell storms. Examples are presented from three storms. A heavy-precipitation supercell storm on 29 May 2004 produced greater than three flashes per second for 1.5 h. Holes in the lightning density formed and dissipated sequentially in the very strong updraft and bounded weak echo region of the mesocyclone. In a small squall line on 19 June 2004, most lightning flashes in the stratiform region were initiated in or near strong updrafts in the convective line and involved positive charge in the upper part of the radar bright band. In a small thunderstorm on 29 June 2004, lightning activity began as polarimetric signatures of graupel first appeared near lightning initiation regions.

Full access
Morris L. Weisman, Robert J. Trapp, Glen S. Romine, Chris Davis, Ryan Torn, Michael Baldwin, Lance Bosart, John Brown, Michael Coniglio, David Dowell, A. Clark Evans, Thomas J. Galarneau Jr., Julie Haggerty, Terry Hock, Kevin Manning, Paul Roebber, Pavel Romashkin, Russ Schumacher, Craig S. Schwartz, Ryan Sobash, David Stensrud, and Stanley B. Trier


The Mesoscale Predictability Experiment (MPEX) was conducted from 15 May to 15 June 2013 in the central United States. MPEX was motivated by the basic question of whether experimental, subsynoptic observations can extend convective-scale predictability and otherwise enhance skill in short-term regional numerical weather prediction.

Observational tools for MPEX included the National Science Foundation (NSF)–National Center for Atmospheric Research (NCAR) Gulfstream V aircraft (GV), which featured the Airborne Vertical Atmospheric Profiling System mini-dropsonde system and a microwave temperature-profiling (MTP) system as well as several ground-based mobile upsonde systems. Basic operations involved two missions per day: an early morning mission with the GV, well upstream of anticipated convective storms, and an afternoon and early evening mission with the mobile sounding units to sample the initiation and upscale feedbacks of the convection.

A total of 18 intensive observing periods (IOPs) were completed during the field phase, representing a wide spectrum of synoptic regimes and convective events, including several major severe weather and/or tornado outbreak days. The novel observational strategy employed during MPEX is documented herein, as is the unique role of the ensemble modeling efforts—which included an ensemble sensitivity analysis—to both guide the observational strategies and help address the potential impacts of such enhanced observations on short-term convective forecasting. Preliminary results of retrospective data assimilation experiments are discussed, as are data analyses showing upscale convective feedbacks.

Full access