Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Tetsuo Nakazawa x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Munehiko Yamaguchi, Frédéric Vitart, Simon T. K. Lang, Linus Magnusson, Russell L. Elsberry, Grant Elliott, Masayuki Kyouda, and Tetsuo Nakazawa


Operational global medium-range ensemble forecasts of tropical cyclone (TC) activity (genesis plus the subsequent track) are systematically evaluated to understand the skill of the state-of-the-art ensembles in forecasting TC activity as well as the relative benefits of a multicenter grand ensemble with respect to a single-model ensemble. The global ECMWF, JMA, NCEP, and UKMO ensembles are evaluated from 2010 to 2013 in seven TC basins around the world. The verification metric is the Brier skill score (BSS), which is calculated within a 3-day time window over a forecast length of 2 weeks to examine the skill from short- to medium-range time scales (0–14 days). These operational global medium-range ensembles are capable of providing guidance on TC activity forecasts that extends into week 2. Multicenter grand ensembles (MCGEs) tend to have better forecast skill (larger BSSs) than does the best single-model ensemble, which is the ECMWF ensemble in most verification time windows and most TC basins. The relative benefit of the MCGEs is relatively large in the north Indian Ocean and TC basins in the Southern Hemisphere where the BSS of the single-model ensemble is relatively small. The BSS metric and the reliability are found to be sensitive to the choice of threshold wind values that are used to define the model TCs.

Full access
Chun-Chieh Wu, Kun-Hsuan Chou, Po-Hsiung Lin, Sim D. Aberson, Melinda S. Peng, and Tetsuo Nakazawa


Starting from 2003, a new typhoon surveillance program, Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR), was launched. During 2004, 10 missions for eight typhoons were conducted successfully with 155 dropwindsondes deployed. In this study, the impact of these dropwindsonde data on tropical cyclone track forecasts has been evaluated with five models (four operational and one research models). All models, except the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model, show the positive impact that the dropwindsonde data have on tropical cyclone track forecasts. During the first 72 h, the mean track error reductions in the National Centers for Environmental Prediction’s (NCEP) Global Forecast System (GFS), the Navy Operational Global Atmospheric Prediction System (NOGAPS) of the Fleet Numerical Meteorology and Oceanography Center (FNMOC), and the Japanese Meteorological Agency (JMA) Global Spectral Model (GSM) are 14%, 14%, and 19%, respectively. The track error reduction in the Weather Research and Forecasting (WRF) model, in which the initial conditions are directly interpolated from the operational GFS forecast, is 16%. However, the mean track improvement in the GFDL model is a statistically insignificant 3%. The 72-h-average track error reduction from the ensemble mean of the above three global models is 22%, which is consistent with the track forecast improvement in Atlantic tropical cyclones from surveillance missions. In all, despite the fact that the impact of the dropwindsonde data is not statistically significant due to the limited number of DOTSTAR cases in 2004, the overall added value of the dropwindsonde data in improving typhoon track forecasts over the western North Pacific is encouraging. Further progress in the targeted observations of the dropwindsonde surveillances and satellite data, and in the modeling and data assimilation system, is expected to lead to even greater improvement in tropical cyclone track forecasts.

Full access