Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Thomas J. Greenwald x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The large-scale spatial distribution and temporal variability of cloud liquid water path (LWP) over the world's oceans and the relationship of cloud LWP to temperature and the radiation budget are investigated using recent satellite measurements from the Special Sensor Microwave/Imager(SSM/1),the Earth Radiation Budget Experiment (ERBE), and the International Satellite Cloud Climatology Project (ISCCP). Observations of cloud liquid water on a 2.5° × 2.5° grid are used over a 53-month period beginning July 1987 and ending in December 1991.
The highest values of cloud liquid water (greater than 0.13 kg m−2) occur largely along principal routes of northern midlatitude storm and in area dominated by tropical convection. The zonally averaged structure is distinctly trimodal, where maxima appear in the midlatitudes and near the equator. The avenge marine cloud LWP over the globe is estimated to he about 0.113 kg m−2. Its highest seasonal variability is typically between 15% and 25% of the annual mean but in certain locations can exceed 30%. Comparisons of cloud LWP to temperature for low clouds during JJA and DJF of 1990 show significant positive correlations at colder temperatures and negative correlations at warmer temperatures. The correlations also exhibit strong seasonal and regional variation.
Coincident and collocated observations of cloud LWP from the SSM/I and albedo measurements from the Earth Radiation Budget Satellite (ERBS) and the NOAA-10 satellite are compared for low clouds in the North Pacific and North Atlantic. The observed albedo-LWP relationships correspond reasonably well with theory, where the average cloud effective radius (re ) is 11.1 μm and the standard deviation is 5.2 μm. The large variability in the inferred values of re suggests that other factors may be important in the albedo-LWP relationships. In terms of the effect of the LWP on the net cloud forcing, the authors find that a 0.05 kg m−2 increase in LWP (for LWP >0.2 kg m−2) results in a −25 W m−2 change in the net cloud forcing at a solar zenith angle of 75°.
Abstract
The large-scale spatial distribution and temporal variability of cloud liquid water path (LWP) over the world's oceans and the relationship of cloud LWP to temperature and the radiation budget are investigated using recent satellite measurements from the Special Sensor Microwave/Imager(SSM/1),the Earth Radiation Budget Experiment (ERBE), and the International Satellite Cloud Climatology Project (ISCCP). Observations of cloud liquid water on a 2.5° × 2.5° grid are used over a 53-month period beginning July 1987 and ending in December 1991.
The highest values of cloud liquid water (greater than 0.13 kg m−2) occur largely along principal routes of northern midlatitude storm and in area dominated by tropical convection. The zonally averaged structure is distinctly trimodal, where maxima appear in the midlatitudes and near the equator. The avenge marine cloud LWP over the globe is estimated to he about 0.113 kg m−2. Its highest seasonal variability is typically between 15% and 25% of the annual mean but in certain locations can exceed 30%. Comparisons of cloud LWP to temperature for low clouds during JJA and DJF of 1990 show significant positive correlations at colder temperatures and negative correlations at warmer temperatures. The correlations also exhibit strong seasonal and regional variation.
Coincident and collocated observations of cloud LWP from the SSM/I and albedo measurements from the Earth Radiation Budget Satellite (ERBS) and the NOAA-10 satellite are compared for low clouds in the North Pacific and North Atlantic. The observed albedo-LWP relationships correspond reasonably well with theory, where the average cloud effective radius (re ) is 11.1 μm and the standard deviation is 5.2 μm. The large variability in the inferred values of re suggests that other factors may be important in the albedo-LWP relationships. In terms of the effect of the LWP on the net cloud forcing, the authors find that a 0.05 kg m−2 increase in LWP (for LWP >0.2 kg m−2) results in a −25 W m−2 change in the net cloud forcing at a solar zenith angle of 75°.
Abstract
The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP), an updated and enhanced version of the University of Wisconsin (UWisc) cloud liquid water path (CLWP) climatology, currently provides 29 years (1988–2016) of monthly gridded (1°) oceanic CLWP information constructed using Remote Sensing Systems (RSS) intercalibrated 0.25°-resolution retrievals. Satellite sources include SSM/I, TMI, AMSR-E, WindSat, SSMIS, AMSR-2, and GMI. To mitigate spurious CLWP trends, the climatology is corrected for drifting satellite overpass times by simultaneously solving for the monthly average CLWP and the monthly mean diurnal cycle. In addition to a longer record and six additional satellite products, major enhancements relative to the UWisc climatology include updating the input to version 7 RSS retrievals, correcting for a CLWP bias (based on matchups to clear-sky MODIS scenes), and constructing a total (cloud + rain) liquid water path (TLWP) record for use in analyses of columnar liquid water in raining clouds. Because the microwave emission signal from cloud water is similar to that of precipitation-sized hydrometeors, greater uncertainty in the CLWP record is expected in regions of substantial precipitation. Therefore, the TLWP field can also be used as a quality-control screen, where uncertainty increases as the ratio of CLWP to TLWP decreases. For regions where confidence in CLWP is highest (i.e., CLWP:TLWP > 0.8), systematic differences in MAC CLWP relative to UWisc CLWP range from −15% (e.g., global oceanic stratocumulus decks) to +5%–10% (e.g., portions of the higher latitudes, storm tracks, and shallower convection regions straddling the ITCZ). The dataset is currently hosted at the Goddard Earth Sciences Data and Information Services Center.
Abstract
The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP), an updated and enhanced version of the University of Wisconsin (UWisc) cloud liquid water path (CLWP) climatology, currently provides 29 years (1988–2016) of monthly gridded (1°) oceanic CLWP information constructed using Remote Sensing Systems (RSS) intercalibrated 0.25°-resolution retrievals. Satellite sources include SSM/I, TMI, AMSR-E, WindSat, SSMIS, AMSR-2, and GMI. To mitigate spurious CLWP trends, the climatology is corrected for drifting satellite overpass times by simultaneously solving for the monthly average CLWP and the monthly mean diurnal cycle. In addition to a longer record and six additional satellite products, major enhancements relative to the UWisc climatology include updating the input to version 7 RSS retrievals, correcting for a CLWP bias (based on matchups to clear-sky MODIS scenes), and constructing a total (cloud + rain) liquid water path (TLWP) record for use in analyses of columnar liquid water in raining clouds. Because the microwave emission signal from cloud water is similar to that of precipitation-sized hydrometeors, greater uncertainty in the CLWP record is expected in regions of substantial precipitation. Therefore, the TLWP field can also be used as a quality-control screen, where uncertainty increases as the ratio of CLWP to TLWP decreases. For regions where confidence in CLWP is highest (i.e., CLWP:TLWP > 0.8), systematic differences in MAC CLWP relative to UWisc CLWP range from −15% (e.g., global oceanic stratocumulus decks) to +5%–10% (e.g., portions of the higher latitudes, storm tracks, and shallower convection regions straddling the ITCZ). The dataset is currently hosted at the Goddard Earth Sciences Data and Information Services Center.