Search Results

You are looking at 1 - 10 of 18 items for :

  • Author or Editor: Thomas Jung x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas Jung
and
Michael Hilmer

Abstract

Recently, Hilmer and Jung have shown that the wintertime link between the North Atlantic oscillation (NAO) and the sea ice export through Fram Strait changed from zero correlation (1958–77) to about 0.7 (1978–97) during the last four decades. In the current study, the authors focus on the question of how the two phenomena are linked in a long-term context during wintertime (December–March). This is done on a statistical basis using data from a century-scale control integration of the coupled general circulation model ECHAM4–OPYC3 along with historical sea level pressure data for the period 1908–97.

From the results of this study there is less indication that a significant link on interannual and decadal timescales between the NAO and the sea ice export through Fram Strait is a characteristic property of the climate system—at least under present-day climate conditions. This missing link can be explained by a vanishing net impact of the NAO on sea ice thickness as well as sea ice drift near Fram Strait and thus the sea ice volume export through Fram Strait. It is argued that the spatial pattern of interannual NAO variability as observed during the last two decades of the twentieth century is unusual and so is the high correlation between the NAO and Arctic sea ice export for the period 1978–97.

Full access
Carsten Eden
and
Thomas Jung

Abstract

In contrast to the atmosphere, knowledge about interdecadal variability of the North Atlantic circulation is relatively restricted. It is the objective of this study to contribute to understanding how the North Atlantic circulation responds to a forcing by the North Atlantic oscillation (NAO) on interdecadal timescales. For this purpose, the authors analyze observed atmospheric and sea surface temperature (SST) data along with the response of an ocean general circulation model to a realistic monthly surface flux forcing that is solely associated with the NAO for the period 1865–1997.

In agreement with previous studies, it is shown that the relationship between the local forcing by the NAO and observed SST anomalies on interdecadal timescales points toward the importance of oceanic dynamics in generating SST anomalies. A comparison between observed and modeled SST anomalies reveals that the model results can be used to assess interdecadal variability of the North Atlantic circulation.

The observed/modeled developments of interdecadal SST anomalies during the periods 1915–39 and 1960–84 against the local damping influence from the NAO can be traced back to the lagged response (10–20 yr) of the North Atlantic thermohaline circulation and the subpolar gyre strength to interdecadal variability of the NAO. Additional sensitivity experiments suggest that primarily interdecadal variability in the surface net heat flux forcing associated with the NAO governs interdecadal changes of the North Atlantic circulation.

Full access
Richard J. Greatbatch
and
Thomas Jung

Abstract

In this paper, a version of the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model is used to (i) diagnose the diabatic heating associated with the winter North Atlantic Oscillation (NAO) and (ii) assess the role of this heating in the dynamics of the NAO in the model. Over the North Atlantic sector, the NAO-related diabatic heating is dominated above the planetary boundary layer by the latent heat release associated with precipitation, and within the boundary layer by vertical diffusion associated with sensible heat flux from the ocean. An association between La NiƱa–El NiƱo–type conditions in the tropical Pacific and the positive/negative NAO is found in model runs using initial conditions and sea surface temperature (SST) lower boundary conditions from the period 1982–2001, but not in a companion set of model runs for the period 1962–81. Model experiments are then described in which the NAO-related diabatic heating diagnosed from the 1982–2001 control run is applied as a constant forcing in the model temperature equation using both 1982–2001 and 1962–81 model setups. To assess the local feedback from the diabatic heating, the specified forcing is first restricted to the North Atlantic sector alone. In this case, the model response (in an ensemble mean sense) is suggestive of a weak negative feedback, but exhibits more baroclinic structure and has its centers of action shifted compared to those of the NAO. On the other hand, forcing with only the tropical Pacific part of the diabatic heating leads to a robust model response in both the 1982–2001 and 1962–81 model setups. The model response projects on to the NAO with the same sign as that used to diagnose the forcing, arguing that the link between the tropical Pacific and the NAO is real in the 1982–2001 control run. The missing link in the corresponding run for 1962–81 is a result of a change in the tropical forcing between the two periods, and not the extratropical flow regime.

Full access
Sergey K. Gulev
,
Thomas Jung
, and
Eberhard Ruprecht

Abstract

North Atlantic synoptic-scale processes are analyzed by bandpassing 6-hourly NCEP–NCAR reanalysis data (1958–98) for several synoptic ranges corresponding to ultrahigh-frequency variability (0.5–2 days), synoptic-scale variability (2–6 days), slow synoptic processes (6–12 days), and low-frequency variability (12–30 days). Climatological patterns of the intensity of synoptic processes are not collocated for different ranges of variability, especially in the lower troposphere. Intensities of synoptic processes demonstrate opposite trends between the North American coast and in the northeast Atlantic. Although north of 40°N the intensity of ultrahigh-frequency variability and synoptic-scale processes show similar interannual variability, further analysis indicates that secular changes, and decadal-scale and interannual variability in the intensities of synoptic processes may not be necessarily consistent for different synoptic timescales. Magnitudes of winter ultrahigh-frequency variability are highly correlated with the intensity of synoptic-scale processes in the 1960s and early 1970s. However, they show little agreement with each other during the last two decades, pointing to the remarkable change in atmospheric variability over the North Atlantic in late 1970s. North Atlantic ultrahigh-frequency variability in winter is highly correlated with surface temperature gradient anomalies in the Atlantic–American sector. These gradients are computed from the merged fields of SST and surface temperature over the continent. They demonstrate a dipolelike pattern associated with the North American coast on one hand, with the subpolar SST front and continental Canada on the other. High-frequency variability and its synoptic counterpart demonstrate different relationships with the North Atlantic Oscillation. Reliability of these results and their sensitivity to the filtering procedures are addressed by comparison to radiosonde data and application of alternative filters.

Full access
Thomas Jung
,
Laura Ferranti
, and
Adrian M. Tompkins

Abstract

The sensitivity of the atmospheric circulation to the warm Mediterranean sea surface temperature (SST) anomalies observed during the summer of 2003 (July and August) is studied using the European Centre for Medium-Range Weather Forecasts (ECMWF) model. A control integration imposes climatological Mediterranean SSTs as a lower boundary condition. The first sensitivity experiment uniformly increases these Mediterranean SSTs by 2 K, the approximate mean observed in the 2003 summer season. A second experiment then investigates the additional impact of the SST distribution by imposing the observed SST summer anomaly.

The response of the atmospheric circulation in the European area shows some resemblance to the observed anomaly. The weakness of this response suggests, however, that the warm Mediterranean played a minor role, if any, in maintaining the anomalous atmospheric circulation as observed in the summer of 2003. Increasing SST in the Mediterranean locally leads to an increase in precipitation, particularly in the western Mediterranean. Furthermore, significantly increased Sahelian rainfall is simulated, deriving from enhanced evaporation in the Mediterranean Sea. In the ECMWF model the anomalously high moisture is advected by the climatological Harmattan and Etesian winds, where enhanced moisture flux convergence leads to more precipitation. The associated diabatic heating leads to a reduction of the African easterly jet strength. A similar Sahelian response has been previously documented using a different atmospheric model, increasing confidence in the robustness of the result. Finally, the results are discussed in the context of the seasonal predictability of European and African climate.

Full access
Sergey Gulev
,
Thomas Jung
, and
Eberhard Ruprecht

Abstract

Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship (VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The largest uncertainties in linear trend estimates are found in relatively poorly sampled regions like the high-latitude North Atlantic and North Pacific as well as the Southern Ocean, where trends can locally show opposite signs when computed from the regularly sampled and undersampled data. Spatial patterns of shorter-period interannual variability, quantified through the EOF analysis, also show remarkable differences between the regularly sampled and undersampled flux datasets in the Labrador Sea and northwest Pacific. In particular, it is shown that in the Labrador Sea region, in contrast to regularly sampled NCEP–NCAR reanalysis fluxes, VOS-like sampled NCEP–NCAR reanalysis fluxes neither show significant interannual variability nor significant trends. These regions, although quite localized covering small parts of the globe, play a crucial role for the coupled atmosphere–ocean system. In the Labrador Sea, for instance, interannual and decadal-scale changes of the surface net heat fluxes are known to affect oceanic convection and, thus, the meridional overturning circulation of the Atlantic Ocean. From a discussion of current atmospheric data assimilation systems it is argued that in poorly sampled regions reanalysis products are superior to VOS-based products for studying interannual and interdecadal variations of atmosphere–ocean interaction. In well-sampled regions, on the other hand, conclusions about surface heat flux variations are relatively insensitive to the choice of the flux products used (VOS versus reanalysis data). The results are confirmed for two different datasets, that is, ECMWF 40-yr Re-Analysis (ERA-40) data and seasonal integrations with a recent version of the ECMWF model in which no actual data were assimilated.

Full access
Sergey Gulev
,
Thomas Jung
, and
Eberhard Ruprecht

Abstract

Sampling uncertainties in the voluntary observing ship (VOS)-based global ocean–atmosphere flux fields were estimated using the NCEP–NCAR reanalysis and ECMWF 40-yr Re-Analysis (ERA-40) as well as seasonal forecasts without data assimilation. Air–sea fluxes were computed from 6-hourly reanalyzed individual variables using state-of-the-art bulk formulas. Individual variables and computed fluxes were subsampled to simulate VOS-like sampling density. Random simulation of the number of VOS observations and simulation of the number of observations with contemporaneous sampling allowed for estimation of random and total sampling uncertainties respectively. Although reanalyses are dependent on VOS, constituting an important part of data assimilation input, it is assumed that the reanalysis fields adequately reproduce synoptic variability at the sea surface. Sampling errors were quantified by comparison of the regularly sampled (i.e., 6 hourly) and subsampled monthly fields of surface variables and fluxes. In poorly sampled regions random sampling errors amount to 2.5°–3°C for air temperature, 3 m sāˆ’1 for the wind speed, 2–2.5 g kgāˆ’1 for specific humidity, and 15%–20% of the total cloud cover. The highest random sampling errors in surface fluxes were found for the sensible and latent heat flux and range from 30 to 80 W māˆ’2. Total sampling errors in poorly sampled areas may be higher than random ones by 60%. In poorly sampled subpolar latitudes of the Northern Hemisphere and throughout much of the Southern Ocean the total sampling uncertainty in the net heat flux can amount to 80–100 W māˆ’2. The highest values of the uncertainties associated with the interpolation/extrapolation into unsampled grid boxes are found in subpolar latitudes of both hemispheres for the turbulent fluxes, where they can be comparable with the sampling errors. Simple dependencies of the sampling errors on the number of samples and the magnitude of synoptic variability were derived. Sampling errors estimated from different reanalyses and from seasonal forecasts yield qualitatively comparable spatial patterns, in which the actual values of uncertainties are controlled by the magnitudes of synoptic variability. Finally, estimates of sampling uncertainties are compared with the other errors in air–sea fluxes and the reliability of the estimates obtained is discussed.

Full access
Jan Streffing
,
Tido Semmler
,
Lorenzo Zampieri
, and
Thomas Jung

ABSTRACT

The impact of Arctic sea ice decline on the weather and climate in midlatitudes is still much debated, with observations suggesting a strong link and models a much weaker link. In this study, we use the atmospheric model OpenIFS in a set of model experiments following the protocol outlined in the Polar Amplification Model Intercomparison Project (PAMIP) to investigate whether the simulated atmospheric response to future changes in Arctic sea ice fundamentally depends on model resolution. More specifically, we increase the horizontal resolution of the model from 125 to 39 km with 91 vertical levels; in a second step, resolution is further increased to 16 km with 137 levels in the vertical. The model does produce a response to sea ice decline with a weaker midlatitude Atlantic jet and increased blocking in the high-latitude Atlantic, but no sensitivity to resolution can be detected with 100 members. Furthermore, we find that the ensemble convergence toward the mean is not impacted by the model resolutions considered here.

Open access
Antonio SƔnchez-Benƭtez
,
Helge Goessling
,
Felix Pithan
,
Tido Semmler
, and
Thomas Jung

Abstract

Extreme weather events are triggered by atmospheric circulation patterns and shaped by slower components, including soil moisture and sea surface temperature, and by the background climate. This separation of factors is exploited by the storyline approach in which an atmospheric model is nudged toward the observed dynamics using different climate boundary conditions to explore their influence. The storyline approach disregards uncertain climatic changes in the frequency and intensity of dynamical conditions, focusing instead on the thermodynamic influence of climate on extreme events. Here we demonstrate an advanced storyline approach that employs a coupled climate model (AWI-CM-1-1-MR) in which the large-scale free-troposphere dynamics are nudged toward ERA5 data. Five-member ensembles are run for present-day (2017–19), preindustrial, +2-K, and +4-K climates branching off from CMIP6 historical and scenario simulations of the same model. In contrast to previous studies, which employed atmosphere-only models, feedbacks between extreme events and the ocean and sea ice state, and the dependence of such feedbacks on the climate, are consistently simulated. Our setup is capable of reproducing observed anomalies of relevant unconstrained parameters, including near-surface temperature, cloud cover, soil moisture, sea surface temperature, and sea ice concentration. Focusing on the July 2019 European heat wave, we find that the strongest warming amplification expands from southern to central Europe over the course of the twenty-first century. The warming reaches up to 10 K in the 4-K-warmer climate, suggesting that an analogous event would entail peak temperatures around 50°C in central Europe.

Significance Statement

This work explores a new storyline method to determine the impact of climate change on specific recent extreme events. The observed evolution of the large-scale atmospheric circulation is imposed in a coupled climate model. Variations in climate parameters, including ocean temperatures and sea ice, are well reproduced. By varying the background climate, including CO2 concentrations, it is demonstrated how the July 2019 European heat wave could have evolved in preindustrial times and in warmer climates. For example, up to 10°C warmer peak temperatures could occur in central Europe in a 4°C warmer climate. The method should be explored for other types of extreme events and has the potential to make climate change more tangible and to inform adaptation measures.

Open access
Qiang Wang
,
Claudia Wekerle
,
Sergey Danilov
,
Dmitry Sidorenko
,
Nikolay Koldunov
,
Dmitry Sein
,
Benjamin Rabe
, and
Thomas Jung

Abstract

The freshwater stored in the Arctic Ocean is an important component of the global climate system. Currently the Arctic liquid freshwater content (FWC) has reached a record high since the beginning of the last century. In this study we use numerical simulations to investigate the impact of sea ice decline on the Arctic liquid FWC and its spatial distribution. The global unstructured-mesh ocean general circulation model Finite Element Sea Ice–Ocean Model (FESOM) with 4.5-km horizontal resolution in the Arctic region is applied. The simulations show that sea ice decline increases the FWC by freshening the ocean through sea ice meltwater and modifies upper ocean circulation at the same time. The two effects together significantly increase the freshwater stored in the Amerasian basin and reduce its amount in the Eurasian basin. The salinification of the upper Eurasian basin is mainly caused by the reduction in the proportion of Pacific Water and the increase in that of Atlantic Water (AW). Consequently, the sea ice decline did not significantly contribute to the observed rapid increase in the Arctic total liquid FWC. However, the changes in the Arctic freshwater spatial distribution indicate that the influence of sea ice decline on the ocean environment is remarkable. Sea ice decline increases the amount of Barents Sea branch AW in the upper Arctic Ocean, thus reducing its supply to the deeper Arctic layers. This study suggests that all the dynamical processes sensitive to sea ice decline should be taken into account when understanding and predicting Arctic changes.

Open access