Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Thomas W. Giambelluca x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Mallory L. Barnes
,
Tomoaki Miura
, and
Thomas W. Giambelluca

Abstract

A comprehensive understanding of the spatial, seasonal, and diurnal patterns in cloud cover frequency over the Hawaiian Islands was developed using high-resolution image data from the National Aeronautics and Space Administration’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. The Terra and Aqua MODIS cloud mask products, which provide the confidence that a given 1-km pixel is unobstructed by cloud, were obtained for the entire MODIS time series (10-plus years) over the main Hawaiian Islands. Monthly statistics were generated from the daily cloud mask data, including mean cloud cover frequency at the four daily overpass times. The derived mean cloud cover frequency showed patterns that were generally consistent with the known distribution of mean rainfall and with the results from previous studies. Cloud cover frequency was the highest over land areas with elevations between the lifting condensation level (~600 m) and the mean height of the trade wind inversion (TWI) base (~2200 m), especially for the windward (northeastern) mountain slopes. Above the TWI, cloud frequency decreased sharply with elevation. Irrespective of season, cloud cover frequency was generally higher in the afternoon than in the morning and higher in daytime than at nighttime although these trends varied spatially. The dry season months (May–October) were less cloudy than the wet season months (November–April) at nighttime. The analysis also revealed a local December–January minimum in the annual cycle of cloud cover frequency. The monthly time series produced in this study is the first high-spatial-resolution cloud cover dataset in Hawaii.

Full access
Ryan J. Longman
,
Henry F. Diaz
, and
Thomas W. Giambelluca

Abstract

Consistent increases in the strength and frequency of occurrence of the trade wind inversion (TWI) are identified across a ~40-yr period (1973–2013) in Hawaii. Changepoint analysis indicates that a marked shift occurred in the early 1990s resulting in a 20% increase in the mean TWI frequency between the periods 1973–90 and 1991–2013, based on the average of changes at two sounding stations and two 6-month (dry and wet) seasons. Regional increases in the atmospheric subsidence are identified in four reanalysis datasets over the same ~40-yr time period. The post-1990 period mean for the NCEP–NCAR reanalysis shows increases in subsidence of 33% and 41% for the dry and wet seasons, respectively. Good agreement was found between the time series of TWI frequency of occurrence and omega, suggesting that previously reported increases in the intensity of Hadley cell subsidence are driving the observed increases in TWI frequency. Correlations between omega and large-scale modes of internal climate variability such as El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) do not explain the abrupt shift in TWI frequency in the early 1990s in both seasons. Reported increases in TWI frequency of occurrence may provide some explanation for climate change–related precipitation change at high elevations in Hawaii. On average, post-1990 rainfall was 6% lower in the dry season and 31% lower in the wet season at nine high-elevation sites. Rainfall was significantly correlated with TWI frequency at all of the stations analyzed.

Full access
Guangxia Cao
,
Thomas W. Giambelluca
,
Duane E. Stevens
, and
Thomas A. Schroeder

Abstract

Using 1979–2003 radiosonde data at Hilo and Līhu‘e, Hawaii, the trade wind inversion (TWI) is found to occur approximately 82% of the time at each station, with average base heights of 2225 m (781.9 hPa) for Hilo and 2076 m (798.8 hPa) for Līhu‘e. A diurnal pattern in base height of nighttime high and afternoon low is consistently found during summer at Hilo. Inversion base height has a September maximum and a secondary maximum in April. Frequency of inversion occurrence was found to be higher during winters and lower during summers of El Niño years than non–El Niño years. Significant upward trends were found for inversion frequency at Hilo for March–May (MAM), June–August (JJA), and September–November (SON) seasons, and at Līhu‘e for all seasons and for annual values.

Full access
Henry F. Diaz
,
Eugene R. Wahl
,
Eduardo Zorita
,
Thomas W. Giambelluca
, and
Jon K. Eischeid

Abstract

Few if any high-resolution (annually resolved) paleoclimate records are available for the Hawaiian Islands prior to ~1850 CE, after which some instrumental records start to become available. This paper shows how atmospheric teleconnection patterns between North America and the northeastern North Pacific (NNP) allow for reconstruction of Hawaiian Islands rainfall using remote proxy information from North America. Based on a newly available precipitation dataset for the state of Hawaii and observed and reconstructed December–February (DJF) sea level pressures (SLPs) in the North Pacific Ocean, the authors make use of a strong relationship between winter SLP variability in the northeast Pacific and corresponding DJF Hawaii rainfall variations to reconstruct and evaluate that season’s rainfall over the period 1500–2012 CE. A general drying trend, though with substantial decadal and longer-term variability, is evident, particularly during the last ~160 years. Hawaiian Islands rainfall exhibits strong modulation by El Niño–Southern Oscillation (ENSO), as well as in relation to Pacific decadal oscillation (PDO)-like variability. For significant periods of time, the reconstructed large-scale changes in the North Pacific SLP field described here and by construction the long-term decline in Hawaiian winter rainfall are broadly consistent with long-term changes in tropical Pacific sea surface temperature (SST) based on ENSO reconstructions documented in several other studies, particularly over the last two centuries. Also noted are some rather large multidecadal fluctuations in rainfall (and hence in NNP SLP) in the eighteenth century of undetermined provenance.

Full access
Thomas W. Giambelluca
,
Dirk Hölscher
,
Therezinha X. Bastos
,
Reginaldo R. Frazão
,
Michael A. Nullet
, and
Alan D. Ziegler

Abstract

Regional climatic change, including significant reductions in Amazon Basin evaporation and precipitation, has been predicted by numerical simulations of total tropical forest removal. These results have been shown to be very sensitive to the prescription of the albedo shift associated with conversion from forest to a replacement land cover. Modelers have so far chosen to use an “impoverished grassland” scenario to represent the postforest land surface. This choice maximizes the shifts in land surface parameters, especially albedo (fraction of incident shortwave radiation reflected by the surface). Recent surveys show secondary vegetation to be the dominant land cover for some deforested areas of the Amazon. The characteristics of secondary vegetation as well as agricultural land covers other than pasture have received little attention from field scientists in the region. This paper presents the results of field measurements of radiation flux over various deforested surfaces on a small farm in the eastern Amazonian state of Pará. The albedo of fields in active use was as high as 0.176, slightly less than the 0.180 recently determined for Amazonian pasture and substantially less than the 0.19 commonly used in GCM simulations of deforestation. For 10-yr-old secondary vegetation, albedo was 0.135, practically indistinguishable from the recently published mean primary forest albedo of 0.134. Measurements of surface temperature and net radiation show that, despite similarity in albedo, secondary vegetation differs from primary forest in energy and mass exchange. The elevation of midday surface temperature above air temperature was found to be greatest for actively and recently farmed land, declining with time since abandonment. Net radiation was correspondingly lower for fields in active or recent use. Using land cover analyses of the region surrounding the study area for 1984, 1988, and 1991, the pace of change in regional-mean albedo is estimated to have declined and appears to be leveling at a value less than 0.03 above that of the original forest cover.

Full access