Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Thomas Wilheit x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas T. Wilheit

It is argued that because microwave radiation interacts much more strongly with hydrometeors than with cloud particles, microwave measurements from space offer a significant chance of making global precipitation estimates. Over oceans, passive microwave measurements are essentially attenuation measurements that can be very closely related to the rain rate independently of the details of the drop-size distribution. Over land, scattering of microwave radiation by the hydrometeors, especially in the ice phase, can be used to estimate rainfall. In scattering, the details of the drop-size distribution are very important and it is therefore more difficult to achieve a high degree of accuracy. The SSM/I (Special Sensor Microwave Imager), a passive microwave imaging sensor that will be launched soon, will have dual-polarized channels at 85.5 GHz that will be very sensitive to scattering by frozen hydrometeors. Other sensors being considered for the future space missions would extend our ability to estimate rain rates from space. The ideal spaceborne precipitation-measurement system would use the complementary strengths of passive microwave, radar, and visible/infrared measurements.

Full access
Lewis J. Allison
,
Edward B. Rodgers
,
Thomas T. Wilheit
, and
Robert W. Fett

A selected group of 1973 North Pacific Ocean tropical cyclones was studied by using data from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR), the Temperature-Humidity Infrared Radiometer (THIR), NOAA-2 and USAF DMSP imageries. From the unique combination of infrared, visible, and microwave data, it was possible during various stages of storm development to differentiate between dense cirrus outflow and rain areas, to identify centers of circulation and areas of low-level moisture, and by the use of a theoretical model to estimate semi-quantitatively areas of light, moderate, and heavy rainfall rates.

Full access
Elena S. Lobl
,
Kazumasa Aonashi
,
Brian Griffith
,
Christian Kummerow
,
Guosheng Liu
,
Masataka Murakami
, and
Thomas Wilheit

The “ Wakasa Bay Experiment” was conducted in order to refine error models for oceanic precipitation from the Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E) measurements and to develop algorithms for snowfall. The NASA P-3 aircraft was equipped with microwave radiometers, covering a frequency range of 10.7–340 GHz, and radars at 13.4, 35.6, and 94 GHz, and was deployed to Yokota Air Base in Japan for flights from 14 January to 3 February 2003. For four flight days (27–30 January) a Gulfstream II aircraft provided by Core Research for Environmental Science and Technology (CREST), carrying an extensive cloud physics payload and a two-frequency (23.8 and 31.4 GHz) microwave radiometer, joined the P-3 for coordinated flights. The Gulfstream II aircraft was part of the “Winter Mesoscale Convective Systems Observations over the Sea of Japan in 2003” (“WMO-03”) field campaign sponsored by Japan Science and Technology Corporation (JST). Extensive data were taken, which addressed all of the experimental objectives. The data obtained with the NASA P-3 are available at the National Snow and Ice Data Center (NSIDC), and they are available free of charge to all interested researchers.

Full access
Gail Skofronick-Jackson
,
Walter A. Petersen
,
Wesley Berg
,
Chris Kidd
,
Erich F. Stocker
,
Dalia B. Kirschbaum
,
Ramesh Kakar
,
Scott A. Braun
,
George J. Huffman
,
Toshio Iguchi
,
Pierre E. Kirstetter
,
Christian Kummerow
,
Robert Meneghini
,
Riko Oki
,
William S. Olson
,
Yukari N. Takayabu
,
Kinji Furukawa
, and
Thomas Wilheit

Abstract

Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.

Full access