Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Timothy A. Coleman x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
The Proposed 1883 Holden Tornado Warning System
Its Genius and Its Applications Today
In the four years before the U.S. Army Signal Corps weather program banned the use of the word “tornado” in its forecasts starting in 1886, Sgt. John P. Finley headed up a program to document and study local storms, including tornadoes. Upon examination of Finley's findings, astronomer Edward S. Holden proposed an automatic local tornado warning system, using telegraph wires, in 1883. He felt that a system that could provide the residents of a town even 5-min warning could save lives. The system he proposed was not only fascinating, but three different aspects of it are still, either directly or indirectly, in use today.
In the four years before the U.S. Army Signal Corps weather program banned the use of the word “tornado” in its forecasts starting in 1886, Sgt. John P. Finley headed up a program to document and study local storms, including tornadoes. Upon examination of Finley's findings, astronomer Edward S. Holden proposed an automatic local tornado warning system, using telegraph wires, in 1883. He felt that a system that could provide the residents of a town even 5-min warning could save lives. The system he proposed was not only fascinating, but three different aspects of it are still, either directly or indirectly, in use today.
Since the successful tornado forecast at Tinker AFB in 1948 paved the way for the issuance of tornado warnings, the science of tornado detection and forecasting has advanced greatly. However, tornado warnings must be disseminated to the public to be of any use. The Texas tornado warning conferences in 1953 began to develop the framework for a modern tornado warning system and included radar detection of tornadoes, a spotter network, and improved communications between the U.S. Weather Bureau, spotters, and public officials, allowing more timely warnings and dissemination of those warnings to the public.
Commercial radio and television are a main source of warnings for many, and the delivery methods on TV have changed much since 1960. NOAA Weather Radio (NWR) was launched after the 1974 Super Outbreak of tornadoes, with the most important feature being the tone alert that allowed receivers to alert people even when the radio broadcast was turned off. Today, NWR reaches most of the U.S. population, and Specific Area Message Encoding technology has improved its warning precision. Outdoor warning sirens, originally designed for use in enemy attack, were made available for use during tornado warnings around 1970.
“Storm based” warnings, adopted by the National Weather Service in 2007, replaced countybased warnings and greatly reduce the warning area. As communications advances continue, tornado warnings will eventually be delivered to precise locations, using GPS and other location technology, through cellular telephones, outdoor sirens, e-mails, and digital television, in addition to NWR.
Since the successful tornado forecast at Tinker AFB in 1948 paved the way for the issuance of tornado warnings, the science of tornado detection and forecasting has advanced greatly. However, tornado warnings must be disseminated to the public to be of any use. The Texas tornado warning conferences in 1953 began to develop the framework for a modern tornado warning system and included radar detection of tornadoes, a spotter network, and improved communications between the U.S. Weather Bureau, spotters, and public officials, allowing more timely warnings and dissemination of those warnings to the public.
Commercial radio and television are a main source of warnings for many, and the delivery methods on TV have changed much since 1960. NOAA Weather Radio (NWR) was launched after the 1974 Super Outbreak of tornadoes, with the most important feature being the tone alert that allowed receivers to alert people even when the radio broadcast was turned off. Today, NWR reaches most of the U.S. population, and Specific Area Message Encoding technology has improved its warning precision. Outdoor warning sirens, originally designed for use in enemy attack, were made available for use during tornado warnings around 1970.
“Storm based” warnings, adopted by the National Weather Service in 2007, replaced countybased warnings and greatly reduce the warning area. As communications advances continue, tornado warnings will eventually be delivered to precise locations, using GPS and other location technology, through cellular telephones, outdoor sirens, e-mails, and digital television, in addition to NWR.
By many metrics, the tornado outbreak on 27 April 2011 was the most significant tornado outbreak since 1950, exceeding the super outbreak of 3–4 April 1974. The number of tornadoes over a 24-h period (midnight to midnight) was 199; the tornado fatalities and injuries were 316 and more than 2,700, respectively; and the insurable loss exceeded $4 billion (U.S. dollars). In this paper, we provide a meteorological overview of this outbreak and illustrate that the event was composed of three mesoscale events: a large early morning quasi-linear convective system (QLCS), a midday QLCS, and numerous afternoon supercell storms. The main data sources include NWS and research radars, profilers, surface measurements, and photos and videos of the tornadoes. The primary motivation for this preliminary research is to document the diverse characteristics (e.g., tornado characteristics and mesoscale organization of deep convection) of this outbreak and summarize preliminary analyses that are worthy of additional research on this case.
By many metrics, the tornado outbreak on 27 April 2011 was the most significant tornado outbreak since 1950, exceeding the super outbreak of 3–4 April 1974. The number of tornadoes over a 24-h period (midnight to midnight) was 199; the tornado fatalities and injuries were 316 and more than 2,700, respectively; and the insurable loss exceeded $4 billion (U.S. dollars). In this paper, we provide a meteorological overview of this outbreak and illustrate that the event was composed of three mesoscale events: a large early morning quasi-linear convective system (QLCS), a midday QLCS, and numerous afternoon supercell storms. The main data sources include NWS and research radars, profilers, surface measurements, and photos and videos of the tornadoes. The primary motivation for this preliminary research is to document the diverse characteristics (e.g., tornado characteristics and mesoscale organization of deep convection) of this outbreak and summarize preliminary analyses that are worthy of additional research on this case.