Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Timothy A. Coleman x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
In this paper, an objective analysis of spatial tornado risk in the United States is performed, using a somewhat different dataset than in some previous tornado climatologies. The focus is on significant tornadoes because their reporting frequency has remained fairly stable for several decades. Also, data before 1973 are excluded, since those tornadoes were rated after the fact and were often overrated. Tornado pathlength within the vicinity of a grid point is used to show tornado risk, as opposed to tornado days or the total number of reported tornadoes. The possibility that many tornadoes in the Great Plains were underrated due to the lack of damage indicators, causing a low bias in the number of significant tornadoes there, is mostly discounted through several analyses. The kernel density analysis of 1973–2011 significant tornadoes performed herein shows that the area of highest risk for tornadoes in the United States extends roughly from Oklahoma to Tennessee and northwestern Georgia, with the highest risk in the southeastern United States, from central Arkansas across most of Mississippi and northern Alabama.
Abstract
In this paper, an objective analysis of spatial tornado risk in the United States is performed, using a somewhat different dataset than in some previous tornado climatologies. The focus is on significant tornadoes because their reporting frequency has remained fairly stable for several decades. Also, data before 1973 are excluded, since those tornadoes were rated after the fact and were often overrated. Tornado pathlength within the vicinity of a grid point is used to show tornado risk, as opposed to tornado days or the total number of reported tornadoes. The possibility that many tornadoes in the Great Plains were underrated due to the lack of damage indicators, causing a low bias in the number of significant tornadoes there, is mostly discounted through several analyses. The kernel density analysis of 1973–2011 significant tornadoes performed herein shows that the area of highest risk for tornadoes in the United States extends roughly from Oklahoma to Tennessee and northwestern Georgia, with the highest risk in the southeastern United States, from central Arkansas across most of Mississippi and northern Alabama.
Abstract
Ducted gravity waves and wake lows have been associated with numerous documented cases of “severe” winds (>25 m s−1) and wind damage. These winds are associated with the pressure perturbations and transient mesoscale pressure gradients occurring in many gravity waves and wake lows. However, not all wake lows and gravity waves produce significant winds nor wind damage. In this paper, the factors that affect the surface winds produced by ducted gravity waves and wake lows are reviewed and examined. It is shown theoretically that the factors most conducive to high surface winds include a large-amplitude pressure disturbance, a slow intrinsic speed of propagation, and an ambient wind with the same sign as the pressure perturbation (i.e., a headwind for a pressure trough). Multiple case studies are presented, contrasting gravity waves and wake lows with varying amplitudes, intrinsic speeds, and background winds. In some cases high winds occurred, while in others they did not. In each case, the factor(s) responsible for significant winds, or the lack thereof, are discussed. It is hoped that operational forecasters will be able to, in some cases, compute these factors in real time, to ascertain in more detail the threat of damaging wind from an approaching ducted gravity wave or wake low.
Abstract
Ducted gravity waves and wake lows have been associated with numerous documented cases of “severe” winds (>25 m s−1) and wind damage. These winds are associated with the pressure perturbations and transient mesoscale pressure gradients occurring in many gravity waves and wake lows. However, not all wake lows and gravity waves produce significant winds nor wind damage. In this paper, the factors that affect the surface winds produced by ducted gravity waves and wake lows are reviewed and examined. It is shown theoretically that the factors most conducive to high surface winds include a large-amplitude pressure disturbance, a slow intrinsic speed of propagation, and an ambient wind with the same sign as the pressure perturbation (i.e., a headwind for a pressure trough). Multiple case studies are presented, contrasting gravity waves and wake lows with varying amplitudes, intrinsic speeds, and background winds. In some cases high winds occurred, while in others they did not. In each case, the factor(s) responsible for significant winds, or the lack thereof, are discussed. It is hoped that operational forecasters will be able to, in some cases, compute these factors in real time, to ascertain in more detail the threat of damaging wind from an approaching ducted gravity wave or wake low.
Abstract
The kinematics and thermodynamics of wake lows have been extensively examined in the literature. However, there has been relatively little focus on the widespread, sometimes very strong winds associated with wake lows. Some wake lows are, essentially, severe local storms, producing widespread and sometimes intense damage, similar to that of a derecho, but they occur in environments supporting elevated convection, a phenomenon not often perceived as a significant wind damage threat. Three significant wake lows that affected Alabama and/or Georgia, producing widespread (25 000–50 000 km2) wind damage, and local wind gusts near 25 m s−1, are reviewed in detail. The environments and morphology of the wake lows are addressed, using radar, surface, and upper-air data.
Abstract
The kinematics and thermodynamics of wake lows have been extensively examined in the literature. However, there has been relatively little focus on the widespread, sometimes very strong winds associated with wake lows. Some wake lows are, essentially, severe local storms, producing widespread and sometimes intense damage, similar to that of a derecho, but they occur in environments supporting elevated convection, a phenomenon not often perceived as a significant wind damage threat. Three significant wake lows that affected Alabama and/or Georgia, producing widespread (25 000–50 000 km2) wind damage, and local wind gusts near 25 m s−1, are reviewed in detail. The environments and morphology of the wake lows are addressed, using radar, surface, and upper-air data.