Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Timothy Lang x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission Core Observatory satellite’s suite of sensors and by the ground-based S-band Next Generation Weather Radar (NEXRAD) network over the continental United States, proxies for the identification of hail are developed from the GPM Core Observatory satellite observables. The full capabilities of the GPM Core Observatory are tested by analyzing more than 20 observables and adopting the hydrometeor classification on the basis of ground-based polarimetric measurements being truth. The proxies have been tested using the critical success index (CSI) as a verification measure. The hail-detection algorithm that is based on the mean Ku-band reflectivity in the mixed-phase layer performs the best of all considered proxies (CSI of 45%). Outside the dual-frequency precipitation radar swath, the polarization-corrected temperature at 18.7 GHz shows the greatest potential for hail detection among all GPM Microwave Imager channels (CSI of 26% at a threshold value of 261 K). When dual-variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka bands outperforms all of the other proxies, with a CSI of 49%. The best-performing radar–radiometer algorithm is based on the mixed-phase reflectivity at Ku band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm that is based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.
Abstract
By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission Core Observatory satellite’s suite of sensors and by the ground-based S-band Next Generation Weather Radar (NEXRAD) network over the continental United States, proxies for the identification of hail are developed from the GPM Core Observatory satellite observables. The full capabilities of the GPM Core Observatory are tested by analyzing more than 20 observables and adopting the hydrometeor classification on the basis of ground-based polarimetric measurements being truth. The proxies have been tested using the critical success index (CSI) as a verification measure. The hail-detection algorithm that is based on the mean Ku-band reflectivity in the mixed-phase layer performs the best of all considered proxies (CSI of 45%). Outside the dual-frequency precipitation radar swath, the polarization-corrected temperature at 18.7 GHz shows the greatest potential for hail detection among all GPM Microwave Imager channels (CSI of 26% at a threshold value of 261 K). When dual-variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka bands outperforms all of the other proxies, with a CSI of 49%. The best-performing radar–radiometer algorithm is based on the mixed-phase reflectivity at Ku band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm that is based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.
Abstract
A statistical analysis of simultaneous observations of more than 800 hailstorms over the continental United States performed by the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) and the ground-based Next Generation Weather Radar (NEXRAD) network has been carried out. Several distinctive features of DPR measurements of hail-bearing columns, potentially exploitable by hydrometeor classification algorithms, are identified. In particular, the height and the strength of the Ka-band reflectivity peak show a strong relationship with the hail shaft area within the instrument field of view (FOV). Signatures of multiple scattering (MS) at the Ka band are observed for a range of rimed particles, including but not exclusively for hail. MS amplifies uncertainty in the effective Ka reflectivity estimate and has a negative impact on the accuracy of dual-frequency rainfall retrievals at the ground. The hydrometeor composition of convective cells presents a large inhomogeneity within the DPR FOV. Strong nonuniform beamfilling (NUBF) introduces large ambiguities in the attenuation correction at Ku and Ka bands, which additionally hamper quantitative retrievals. The effective detection of profiles affected by MS is a very challenging task, since the inhomogeneity within the DPR FOV may result in measurements that look remarkably like MS signatures. The shape of the DPR reflectivity profiles is the result of the complex interplay between the scattering properties of the different hydrometeors, NUBF, and MS effects, which significantly reduces the ability of the DPR system to detect hail at the ground.
Abstract
A statistical analysis of simultaneous observations of more than 800 hailstorms over the continental United States performed by the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) and the ground-based Next Generation Weather Radar (NEXRAD) network has been carried out. Several distinctive features of DPR measurements of hail-bearing columns, potentially exploitable by hydrometeor classification algorithms, are identified. In particular, the height and the strength of the Ka-band reflectivity peak show a strong relationship with the hail shaft area within the instrument field of view (FOV). Signatures of multiple scattering (MS) at the Ka band are observed for a range of rimed particles, including but not exclusively for hail. MS amplifies uncertainty in the effective Ka reflectivity estimate and has a negative impact on the accuracy of dual-frequency rainfall retrievals at the ground. The hydrometeor composition of convective cells presents a large inhomogeneity within the DPR FOV. Strong nonuniform beamfilling (NUBF) introduces large ambiguities in the attenuation correction at Ku and Ka bands, which additionally hamper quantitative retrievals. The effective detection of profiles affected by MS is a very challenging task, since the inhomogeneity within the DPR FOV may result in measurements that look remarkably like MS signatures. The shape of the DPR reflectivity profiles is the result of the complex interplay between the scattering properties of the different hydrometeors, NUBF, and MS effects, which significantly reduces the ability of the DPR system to detect hail at the ground.