Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Timothy M. Hall x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Leonard M. Druyan
and
Timothy M. Hall

Abstract

Simulations made with the general circulation model of the NASA/Goddard Institute for Space Studies (GISS GCM) run at 4° latitude by 5° longitude horizontal resolution are analyzed to determine the model's representation of African wave disturbances. Waves detected in the model's lower troposphere over northern Africa during the summer monsoon season exhibit realistic wavelengths of about 2200 km. However, power spectra of the meridional wind show that the waves propagate westward too slowly, with periods of 5–10 days, about twice the observed values. This sluggishness is most pronounced during August, consistent with simulated 600-mb zonal winds that are only about half the observed speeds of the midtropospheric jet. The modeled wave amplitudes are strongest over West Africa during the first half of the summer but decrease dramatically by September, contrary to observational evidence. Maximum amplitudes occur at realistic latitudes, 12°–20°N, but not as observed near the Atlantic coast. Spectral analyses suggest some wave modulation of precipitation in the 5–8-day band, and compositing shows that precipitation is slightly enhanced east of the wave trough, coincident with southerly winds. Extrema of low-level convergence west of the wave troughs, coinciding with northerly winds, were not preferred areas for simulated precipitation, probably because of the drying effect of this advection, as waves were generally north of the humid zone. The documentation of African wave disturbances in the GISS GCM is a first step toward considering wave influences in future GCM studies of Sahel drought.

Full access
Timothy M. Hall
,
James P. Kossin
,
Terence Thompson
, and
James McMahon

Abstract

We use a statistical tropical cyclone (TC) model, the North Atlantic Stochastic Hurricane Model (NASHM), in combination with sea surface temperature (SST) projections from climate models, to estimate regional changes in U.S. TC activity into the 2030s. NASHM is trained on historical variations in TC characteristics with two SST indices: global–tropical mean SST and the difference between tropical North Atlantic Ocean (NA) SST and the rest of the global tropics, often referred to as “relative SST.” Testing confirms the model’s ability to reproduce historical U.S. TC activity as well as to make skillful predictions. When NASHM is driven by SST projections into the 2030s, overall NA annual TC counts increase, and the fractional increase is the greatest at the highest wind intensities. However, an eastward anomaly in mean TC tracks and an eastward shift in TC formation region result in a geographically varied signal in U.S. coastal activity. Florida’s Gulf Coast is projected to see significant increases in TC activity relative to the long-term historical mean, and these increases are fractionally greatest at the highest intensities. By contrast, the northwestern U.S. Gulf Coast and the U.S. East Coast will see little change.

Full access