Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Todd P. Lane x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Todd P. Lane
and
Robert D. Sharman

Abstract

Deep moist convection generates turbulence in the clear air above and around developing clouds, penetrating convective updrafts and mature thunderstorms. This turbulence can be due to shearing instabilities caused by strong flow deformations near the cloud top, and also to breaking gravity waves generated by cloud–environment interactions. Turbulence above and around deep convection is an important safety issue for aviation, and improved understanding of the conditions that lead to out-of-cloud turbulence formation may result in better turbulence avoidance guidelines or forecasting capabilities. In this study, a series of high-resolution two- and three-dimensional model simulations of a severe thunderstorm are conducted to examine the sensitivity of above-cloud turbulence to a variety of background flow conditions—in particular, the above-cloud wind shear and static stability. Shortly after the initial convective overshoot, the above-cloud turbulence and mixing are caused by local instabilities in the vicinity of the cloud interfacial boundary. At later times, when the convection is more mature, gravity wave breaking farther aloft dominates the turbulence generation. This wave breaking is caused by critical-level interactions, where the height of the critical level is controlled by the above-cloud wind shear. The strength of the above-cloud wind shear has a strong influence on the occurrence and intensity of above-cloud turbulence, with intermediate shears generating more extensive regions of turbulence, and strong shear conditions producing the most intense turbulence. Also, more stable above-cloud environments are less prone to turbulence than less stable situations. Among other things, these results highlight deficiencies in current turbulence avoidance guidelines in use by the aviation industry.

Full access
Todd P. Lane
,
Robert D. Sharman
,
Rod G. Frehlich
, and
John M. Brown

Abstract

This study uses a series of numerical simulations to examine the structure of the wake of the Hawaiian island of Kauai. The primary focus is on the conditions on 26 June 2003, which was the day of the demise of the Helios aircraft within Kauai’s wake. The simulations show that, in an east-northeasterly trade wind flow, Kauai produces a well-defined wake that can extend 40 km downstream of the island. The wake is bounded to the north and south by regions of strong vertical and horizontal shear—that is, shear lines. These shear lines mark the edge of the wake in the horizontal plane and are aligned approximately parallel to the upstream flow direction at each respective height. The highest-resolution simulations show that these shear lines can become unstable and break down through Kelvin–Helmholtz instability. The breakdown generates turbulent eddies that are advected both downstream and into the recirculating wake flow. Turbulence statistics are estimated from the simulation using a technique that analyzes model-derived structure functions. A number of sensitivity studies are also completed to determine the influence of the upstream conditions on the structure of the wake. These simulations show that directional shear controls the tilt of the wake in the north–south plane with height. These simulations also show that at lower incident wind speeds the wake has a qualitatively similar structure but is less turbulent. At higher wind speeds, the flow regime changes, strong gravity waves are generated, and the wake is poorly defined. These results are consistent with previous idealized studies of stratified flow over isolated obstacles.

Full access