Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Todd P. Lane x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Claire L. Vincent
and
Todd P. Lane

Abstract

The Maritime Continent is one of the wettest regions on the planet and has been shown to be important for global budgets of heat and moisture. Convection in the region, however, varies on several interrelated scales, making it difficult to quantify the precipitation climate and understand the key processes. For example, the diurnal cycle in precipitation over the land varies substantially according to the phase of the Madden–Julian oscillation (MJO), and the diurnal precipitation cycle over the water is coupled to that over the land, in some cases for distances of over 1000 km from the coast.

Here, a 10-yr austral summer climatology of diurnal and MJO-scale variations in rain rate over the land and sea over the Maritime Continent is presented. The climatology is based on mesoscale model simulations with a horizontal grid length of 4 km and satellite precipitation estimates. The amplitude of the observed diurnal precipitation cycle is shown to reach a maximum just prior to the MJO active phase, with a weaker secondary maximum after the MJO active phase. Although these two maxima also exist in the modeled diurnal precipitation cycle, there is less difference between the maxima before and after the MJO active phase than in the observations. The modeled sea-breeze circulation is also shown to possess approximately equal maxima just before and just after the MJO active period, suggesting that the asymmetry of the diurnal precipitation cycle about the MJO active period is related more to moisture availability than kinematic forcing.

Full access
Martin Bergemann
,
Christian Jakob
, and
Todd P. Lane

Abstract

Coastally associated rainfall is a common feature, especially in tropical and subtropical regions. However, it has been difficult to quantify the contribution of coastal rainfall features to the overall local rainfall. The authors develop a novel technique to objectively identify precipitation associated with land–sea interaction and apply it to satellite-based rainfall estimates. The Maritime Continent, the Bight of Panama, Madagascar, and the Mediterranean are found to be regions where land–sea interactions play a crucial role in the formation of precipitation. In these regions ~40%–60% of the total rainfall can be related to coastline effects. Because of its importance for the climate system, the Maritime Continent is a region of particular interest, with high overall amounts of rainfall and large fractions resulting from land–sea interactions throughout the year. To demonstrate the utility of this study’s identification method, the authors investigate the influence of several modes of variability, such as the Madden–Julian oscillation and the El Niño–Southern Oscillation, on coastal rainfall behavior. The results suggest that during large-scale suppressed convective conditions, coastal effects tend to modulate the rainfall over the Maritime Continent leading to enhanced rainfall over land regions compared to the surrounding oceans. The authors propose that the novel objective dataset of coastally influenced precipitation can be used in a variety of ways, such as to inform cumulus parameterization or as an additional tool for evaluating the simulation of coastal precipitation within weather and climate models.

Full access
Jackson Tan
,
Christian Jakob
, and
Todd P. Lane

Abstract

The use of cloud regimes in identifying tropical convection and the associated large-scale atmospheric properties is investigated. The regimes are derived by applying cluster analysis to satellite retrievals of daytime-averaged frequency distributions of cloud-top pressure and optical thickness within grids of 280 km by 280 km resolution from the International Satellite Cloud Climatology Project between 1983 and 2008. An investigation of atmospheric state variables as a function of cloud regime reveals that the regimes are useful indicators of the archetypal states of the tropical atmosphere ranging from a strongly convecting regime with large stratiform cloudiness to strongly suppressed conditions showing a large coverage with stratocumulus clouds. The convectively active regimes are shown to be moist and unstable with large-scale ascending motion, while convectively suppressed regimes are dry and stable with large-scale descending winds. Importantly, the cloud regimes also represent several transitional states. In particular, the cloud regime approach allows for the identification of the “building blocks” of tropical convection, namely, the regimes dominated by stratiform, deep, and congestus convection. The availability of the daily distribution of these building blocks for more than 20 years opens new avenues for the diagnosis of convective behavior as well as the evaluation of the representation of convection in global and regional models.

Full access
Thi Lan Dao
,
Claire L. Vincent
, and
Todd P. Lane

Abstract

This study examines the multiscale modulation of mean and extreme rainfall in Northeast (NE) Australia under different background modes of variability, which is a new aspect given the high-resolution and long-term observational datasets. Daily rainfall probability is significantly modified by the Madden–Julian oscillation (MJO), and its influence varies with the seasons and is associated with atmospheric circulation anomalies. Rainfall generally decreases during El Niño and increases during La Niña years; however, there is a notable spatial nuance to El Niño–Southern Oscillation (ENSO)-associated extreme rainfall, with some locations showing the opposite precipitation response to the typical ENSO–rainfall relationship. Despite more precipitation overall in La Niña years, the mean and extreme precipitation responses to the MJO appear to be stronger and more often statistically significant during El Niño compared to La Niña periods. The impact of ENSO on the MJO–rainfall relationship is stronger than the variation of the MJO itself with ENSO, and likely reflects a change in the MJO modulation of rain-bearing atmospheric processes. During El Niño periods, diurnal rainfall amplitude is generally stronger in the central and southern subtropical parts of the study area than during La Niña periods, while the opposite tendency occurs in the northern tropical part. The diurnal cycle of both mean and extreme precipitation is amplified during suppressed convection phases compared to enhanced convection phases of the MJO. In general, the peak time of diurnal cycle does not change with MJO regimes, but there are some notable differences in rainfall propagation between enhanced and suppressed MJO phases.

Significance Statement

This study presents a new perspective on the relationship between precipitation in Northeast (NE) Australia and two important climate modes, the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO). Rainfall in NE Australia is strongly influenced by the MJO, ENSO, and their interaction, suggesting that climate models need to capture both individual climate modes and their interactions for reliable rainfall projections. These findings have societal climate risk implications, as NE Australia is an area prone to catastrophic flooding due to extreme rainfall.

Free access
Malcolm J. King
,
Matthew C. Wheeler
, and
Todd P. Lane

Abstract

The 5-day Rossby–Haurwitz wave is unlike other large-scale wave modes that interact with tropical rainfall in that associated rainfall presents as a modulation of localized areas of rainfall instead of propagating with the wave. This form of wave-modulated convective organization in climate models has received little attention. This study investigates the simulation of interactions between the 5-day wave and tropical convection in 30 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and compares these with the interaction diagnosed from ERA-Interim and TRMM precipitation data. Models simulate the dry dynamics of the 5-day wave well, with realistic coherences between upper- and lower-tropospheric winds, as well as magnitudes and geographic distribution of wave wind anomalies being close to observations. The models consistently display significant coherences between 5-day-wave zonal winds and precipitation but perform less well at simulating the spatial distribution and magnitude of precipitation anomalies. For example, a third of the models do not reproduce significant observed anomalies near the Andes, and the best-performing model simulates only 38% of the observed variance over the tropical Andes and 24% of the observed variance over the Gulf of Guinea. Models with higher resolution perform better in simulating the magnitude of the Andean rainfall anomalies, but there is no similar relationship over the Gulf of Guinea. The evidence therefore suggests that the simulated interaction is mostly one way only, with the wave dynamics forcing the precipitation variations on the 5-day time scale.

Full access
Kimberley J. Reid
,
Andrew D. King
,
Todd P. Lane
, and
Debra Hudson

Abstract

Studies of atmospheric rivers (ARs) over Australia have, so far, only focused on northwest cloudband–type weather systems. Here we perform a comprehensive analysis of AR climatology and impacts over Australia that includes not only northwesterly systems, but easterly and extratropical ARs also. We quantify the impact of ARs on mean and extreme rainfall including assessing how the origin location of ARs can alter their precipitation outcomes. We found a strong relationship between ARs and extreme rainfall in the agriculturally significant Murray–Daring basin region. We test the hypothesis that the tropical and subtropical originating ARs we observe in Australasia differ from canonical extratropical ARs by examining the vertical structure of ARs grouped by origin location. We found that in the moisture abundant tropics and subtropics, wind speed drives the intensity of ARs, while in the extratropics, the strength of an AR is largely determined by moisture availability. Finally, we examine the modulation of AR frequency by different climate modes. We find weak (but occasionally significant) correlations between ARs frequency and El Niño–Southern Oscillation, the Indian Ocean dipole, and the southern annular mode. However, there is a stronger relationship between the phases of the Madden–Julian oscillation and tropical AR frequency, which is an avenue for potential skill in forecasting ARs on subseasonal time scales.

Full access