Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Toshio Iguchi x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
In developing the upcoming Global Precipitation Measurement (GPM) mission, a dual-frequency Ku–Ka-band radar system will be used to measure rainfall in such a fashion that the reflectivity ratio intrinsic to the measurement will be sensitive to underlying variations in the drop size distribution (DSD) of rain. This will enable improved techniques for retrieving rain rates, which are dependent upon several key properties of the DSD. This study examines this problem by considering a three-parameter set defined by liquid water content (W), DSD effective radius (r
e
), and DSD effective variance (υ
e
). Using radiative transfer simulations, this parameter set is shown to be related to a radar reflectivity factor and specific attenuation in such a fashion that details of the DSDs are immaterial under constant W, and thus effectively represent important variations in DSD that affect rain rate but with a minimal number of parameters. The analysis also examines the effectiveness of including some measure of mean Doppler fall velocity of raindrops (
Abstract
In developing the upcoming Global Precipitation Measurement (GPM) mission, a dual-frequency Ku–Ka-band radar system will be used to measure rainfall in such a fashion that the reflectivity ratio intrinsic to the measurement will be sensitive to underlying variations in the drop size distribution (DSD) of rain. This will enable improved techniques for retrieving rain rates, which are dependent upon several key properties of the DSD. This study examines this problem by considering a three-parameter set defined by liquid water content (W), DSD effective radius (r
e
), and DSD effective variance (υ
e
). Using radiative transfer simulations, this parameter set is shown to be related to a radar reflectivity factor and specific attenuation in such a fashion that details of the DSDs are immaterial under constant W, and thus effectively represent important variations in DSD that affect rain rate but with a minimal number of parameters. The analysis also examines the effectiveness of including some measure of mean Doppler fall velocity of raindrops (