Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Trent W. Ford x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Steven M. Quiring
,
Trent W. Ford
,
Jessica K. Wang
,
Angela Khong
,
Elizabeth Harris
,
Terra Lindgren
,
Daniel W. Goldberg
, and
Zhongxia Li

Abstract

Soil moisture is an important variable in the climate system that integrates the combined influence of the atmosphere, land surface, and soil. Soil moisture is frequently used for drought monitoring and climate forecasting. However, in situ soil moisture observations are not systematically archived and there are relatively few national soil moisture networks. The lack of observed soil moisture data makes it difficult to characterize long-term soil moisture variability and trends. The North American Soil Moisture Database (NASMD) is a new high-quality observational soil moisture database. It includes over 1,800 monitoring stations in the United States, Canada, and Mexico, making it the largest collections of in situ soil moisture observations in North America. Data are collected from multiple sources, quality controlled, and integrated into an online database (soilmoisture.tamu.edu). Here we describe the development of the database, including quality control/quality assurance, standardization, and collection of metadata. The utility of the NASMD is demonstrated through an analysis of the inter- and intraannual variability of soil moisture from multiple networks. The NASMD is a useful tool for drought monitoring and forecasting, calibrating/validating satellites and land surface models, and documenting how soil moisture influences the climate system on seasonal to interannual time scales.

Full access
Jason A. Otkin
,
Mark Svoboda
,
Eric D. Hunt
,
Trent W. Ford
,
Martha C. Anderson
,
Christopher Hain
, and
Jeffrey B. Basara

Abstract

Given the increasing use of the term “flash drought” by the media and scientific community, it is prudent to develop a consistent definition that can be used to identify these events and to understand their salient characteristics. It is generally accepted that flash droughts occur more often during the summer owing to increased evaporative demand; however, two distinct approaches have been used to identify them. The first approach focuses on their rate of intensification, whereas the second approach implicitly focuses on their duration. These conflicting notions for what constitutes a flash drought (i.e., unusually fast intensification vs short duration) introduce ambiguity that affects our ability to detect their onset, monitor their development, and understand the mechanisms that control their evolution. Here, we propose that the definition for “flash drought” should explicitly focus on its rate of intensification rather than its duration, with droughts that develop much more rapidly than normal identified as flash droughts. There are two primary reasons for favoring the intensification approach over the duration approach. First, longevity and impact are fundamental characteristics of drought. Thus, short-term events lasting only a few days and having minimal impacts are inconsistent with the general understanding of drought and therefore should not be considered flash droughts. Second, by focusing on their rapid rate of intensification, the proposed “flash drought” definition highlights the unique challenges faced by vulnerable stakeholders who have less time to prepare for its adverse effects.

Full access
Jordan R. Bell
,
Kristopher M. Bedka
,
Christopher J. Schultz
,
Andrew L. Molthan
,
Sarah D. Bang
,
Justin Glisan
,
Trent Ford
,
W. Scott Lincoln
,
Lori A. Schultz
,
Alexander M. Melancon
,
Emily F. Wisinski
,
Kyle Itterly
,
Cameron R. Homeyer
,
Daniel J. Cecil
,
Craig Cogil
,
Rodney Donavon
,
Eric Lenning
, and
Ray Wolf

Abstract

The catastrophic derecho that occurred on 10 August 2020 across the midwestern United States caused billions of dollars of damage to both urban and rural infrastructure as well as agricultural crops, most notably across the state of Iowa. This paper documents the complex evolution of the derecho through the use of low-Earth-orbit passive-microwave imager and GOES-16 satellite-derived products complemented by products derived from NEXRAD weather radar observations. Additional satellite sensors including optical imagers and synthetic aperture radar (SAR) were used to observe impacts to the power grid and agriculture in Iowa. SAR improved the identification and quantification of damaged corn and soybeans, as compared to true-color composites and normalized difference vegetation index (NDVI). A statistical approach to identify damaged corn and soybean crops from SAR was created with estimates of 1.97 million acres of damaged corn and 1.40 million acres of damaged soybeans in the state of Iowa. The damage estimates generated by this study were comparable to estimates produced by others after the derecho, including two commercial agricultural companies.

Full access