Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: U. Lohmann x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
U. Lohmann

Abstract

Observations by Borys, Lowenthal, Cohn, and Brown in midlatitude orographic clouds show that for a given supercooled liquid water content, both the riming and the snowfall rates are smaller if the supercooled cloud has more cloud droplets as, for example, caused by anthropogenic aerosols. The climatic implication of this effect was studied in global climate model simulations by replacing the constant riming efficiency with a size-dependent one appropriate for planar crystals and aggregates, respectively. In the model simulations that use a size-dependent riming collection efficiency, the pollution-induced decrease in cloud droplet size causes a decrease in the riming rate in stratiform clouds despite larger liquid water contents in polluted clouds. Contrary to the above-mentioned observations, in all model simulations the snowfall rate increases because of feedbacks in the climate system. Anthropogenic aerosol particles increase the aerosol and cloud optical thickness, which reduces the solar radiation at the top of the atmosphere and the surface. This in turn causes a cooling in Northern Hemisphere midlatitudes that favors precipitation formation via the ice phase.

Full access
U. Lohmann
and
K. Diehl

Abstract

New parameterizations of contact freezing and immersion freezing in stratiform mixed-phase clouds (with temperatures between 0° and −35°C) for black carbon and mineral dust assumed to be composed of either kaolinite (simulation KAO) or montmorillonite (simulation MON) are introduced into the ECHAM4 general circulation model. The effectiveness of black carbon and dust as ice nuclei as a function of temperature is parameterized from a compilation of laboratory studies. This is the first time that freezing parameterizations take the chemical composition of ice nuclei into account. The rather subtle differences between these sensitivity simulations in the present-day climate have significant implications for the anthropogenic indirect aerosol effect. The decrease in net radiation in these sensitivity simulations at the top of the atmosphere varies from 1 ± 0.3 to 2.1 ± 0.1 W m−2 depending on whether dust is assumed to be composed of kaolinite or montmorillonite. In simulation KAO, black carbon has a higher relevancy as an ice nucleus than in simulation MON, because kaolinite is not freezing as effectively as montmorillonite. In simulation KAO, the addition of anthropogenic aerosols results in a larger ice water path, a slightly higher precipitation rate, and a reduced total cloud cover. On the contrary, in simulation MON the increase in ice water path is much smaller and globally the decrease in precipitation is dominated by the reduction in warm-phase precipitation due to the indirect cloud lifetime effect.

Full access
Francesco A. Isotta
,
P. Spichtinger
,
U. Lohmann
, and
K. von Salzen

Abstract

A transient shallow-convection scheme is implemented into the general circulation model ECHAM5 and the coupled aerosol model HAM, developed at the Max Planck Institute for Meteorology in Hamburg. The shallow-convection scheme is extended to take the ice phase into account. In addition, a detailed double-moment microphysics approach has been added. In this approach, the freezing processes and precipitation formation are dependent on aerosols. Furthermore, in the scheme, tracers are transported and scavenged consistently as in the rest of the model. Results of a single-column model simulation for the Barbados Oceanography and Meteorology Experiment (BOMEX) campaign are compared with previously published large-eddy simulation (LES) results. Compared to the standard version, the global ECHAM5-HAM simulations with the newly implemented scheme show a decreased frequency of shallow convection in better agreement with LES. Less shallow convection is compensated by more stratus and stratocumulus. Deep and especially midlevel convection are markedly affected by those changes, which in turn influence high-level clouds. Generally, a better agreement with the observations can be obtained. For a better understanding of the scheme’s impact and to test different setting parameters, sensitivity analyses are performed. The mixing properties, cloud-base vertical velocity, and launching layer of the test parcel, respectively, are varied. In this context, results from simulations without shallow convection are also presented.

Full access