Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Vadlamudi Brahmananda Rao x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Dandu Govardhan
,
Vadlamudi Brahmananda Rao
, and
Karumuri Ashok

Abstract

In this paper, the authors suggest a dynamical mechanism involved in the revival of the summer monsoon after breaks. In this context, the authors carry out a diagnostic analysis using the datasets from National Centers for Environmental Prediction Reanalysis 2 for the period 1979–2007 to identify a robust mechanism that typifies breaks and subsequent revival of monsoon. The authors find during the peak of significant breaks an anomalous southward shift of the subtropical westerly jet stream, which is invariably accompanied by an anomalous northward shift of a stronger-than-normal easterly jet. These major changes during a break facilitate an instability mechanism, which apparently leads to formation of a synoptic disturbance. Formation of such a disturbance is critical to the subsequent revival of the summer monsoon in 61% of the observed break-to-active revivals.

Computations of energetics and correlation analysis carried out suggest an increase in the eddy kinetic energy at the expense of the mean kinetic energy during the breaks, in agreement with the formation of the synoptic disturbance. This demonstrates that barotropic instability in the presence of a monsoon basic flow is the primary physical mechanism that controls the revival of the summer monsoon subsequent to the break events.

Full access
Prakki Satyamurthy
,
Vadlamudi Brahmananda Rao
, and
Antonio Divino Moura

Abstract

A linear stability analysis of the hyperbolic tangent profiles is made. A Boussinesq primitive equation model with high vertical resolution is used. Unstable modes of intermediate scales (Lx ≈ 1000 km) are generated when the curvature, d 2ū/dz 2, of the basic flow in the lower levels is negative. Even if the curvature in the lower levels is positive, intermediate-scale unstable modes appear for smaller static stability and shear (Richardson number not necessarily small) or for certain vertical distributions of diabatic heating due to the liberation of latent heat in the lower troposphere. The amplitude of the most unstable intermediate-scale wave is confined to the lower troposphere and its growth rate increases with the inclusion of diabatic heating.

Full access