Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Vanda Grubišić x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Stefano Serafin
,
Lukas Strauss
, and
Vanda Grubišić

Abstract

A 5-yr climatology of westerly wind events in Owens Valley, California, is derived from data measured by a mesoscale network of 16 automatic weather stations. Thermally driven up- and down-valley flows are found to account for a large part of the diurnal wind variability in this approximately north–south-oriented deep U-shaped valley. High–wind speed events at the western side of the valley deviate from this basic pattern by showing a higher percentage of westerly winds. In general, strong westerly winds in Owens Valley tend to be more persistent and to display higher sustained speeds than strong winds from other quadrants. The highest frequency of strong winds at the valley floor is found in the afternoon hours from April to September, pointing to thermal forcing as a plausible controlling mechanism. However, the most intense westerly wind events (westerly windstorms) can happen at any time of the day throughout the year. The temperature and humidity variations caused by westerly windstorms depend on the properties of the approaching air masses. In some cases, the windstorms lead to overall warming and drying of the valley atmosphere, similar to foehn or chinook intrusions. The key dynamical driver of westerly windstorms in Owens Valley is conjectured to be the downward penetration of momentum associated with mountain waves produced by the Sierra Nevada ridgeline to the west of the valley.

Full access
Željko Večenaj
,
Stephan F. J. De Wekker
, and
Vanda Grubišić

Abstract

A case study of mountain-wave-induced turbulence observed during the Terrain-Induced Rotor Experiment (T-REX) in Owens Valley, California, is presented. During this case study, large spatial and temporal variability in aerosol backscatter associated with mountain-wave activity was observed in the valley atmosphere by an aerosol lidar. The corresponding along- and cross-valley turbulence structure was investigated using data collected by three 30-m flux towers equipped with six levels of ultrasonic anemometers. Time series of turbulent kinetic energy (TKE) show higher levels of TKE on the sloping western part of the valley when compared with the valley center. The magnitude of the TKE is highly dependent on the averaging time on the western slope, however, indicating that mesoscale transport associated with mountain-wave activity is important here. Analysis of the TKE budget shows that in the central parts of the valley mechanical production of turbulence dominates and is balanced by turbulent dissipation, whereas advective effects appear to play a dominant role over the western slope. In agreement with the aerosol backscatter observations, spatial variability of a turbulent-length-scale parameter suggests the presence of larger turbulent eddies over the western slope than along the valley center. The data and findings from this case study can be used to evaluate the performance of turbulence parameterization schemes in mountainous terrain.

Full access