Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Veljko Petković x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Veljko Petković
and
Christian D. Kummerow

Abstract

An updated version of the Goddard Profiling Algorithm (GPROF 2014) with a new overland scheme was released with the launch of the Global Precipitation Mission (GPM) core satellite in February 2014. The algorithm is designed to provide consistent precipitation estimates over both ocean and land across diverse satellite platforms. This study tests the performance of the new retrieval, focusing specifically on an extreme rainfall event. Two contrasting 72-h precipitation events over the same area are used to compare the retrieved products against ground measurements. The first event is characterized by persistent and intense precipitation of an unusually strong and widespread system, which caused historical flooding of the central Balkan region of southeastern Europe in May 2014. The second event serves as a baseline case for a more typical midlatitude regime. Rainfall rates and 3-day accumulations given by five conically scanning radiometers (GMI; AMSR2; and SSMIS F16, F17, and F18) in the GPM constellation are compared against ground radar data from the Operational Program for Exchange of Weather Radar Information (OPERA) network and in situ measurements. Satellite products show good agreement with ground radars; the retrieval closely reproduces spatial and temporal characteristics of both events. Strong biases related to precipitation regimes are found when satellite and radar measurements are compared to ground gauges. While the GPM constellation performs well during the nonextreme event, showing ~10% negative bias, it underestimates gauge accumulations of the Balkan flood event by 60%. Analyses show that the biases are caused by the differences between the expected and observed ice-scattering signals, suggesting that better understanding of the environment and its impact on rain profiles is the key for successful retrievals in extreme events.

Full access
Malarvizhi Arulraj
,
Veljko Petkovic
,
Ralph R. Ferraro
, and
Huan Meng

Abstract

The three-dimensional (3D) structure of precipitation systems is highly dependent on hydrometeor formation processes and microphysics. This study aims to characterize distinct vertical profiles of precipitation regimes by relying on the availability of a high-quality, spatially dense radar network and its capability to observe the 3D structure of the storms. A deep-learning-based framework, coupled with unsupervised clustering methods, is developed to identify types of precipitation structures irrespective of their physical properties. A 6-month period of 3D reflectivity profiles from the Multi-Radar Multi-Sensor (MRMS) network is used to identify different regimes and investigate their properties with respect to the underlying environmental conditions. Dominant features retrieved from radar reflectivity profiles using convolutional neural-network-based autoencoders are employed to identify similar-looking vertical structures using coupled k-means and agglomerative clustering algorithms. The k-means method identifies distinct groups, while the agglomerative clustering visualizes intercluster relationships. The framework identifies 18 clusters that can be broadly combined into five groups of varied echo-top heights. The 18 clusters demonstrate variability with respect to structural features and precipitation rate/type, implying that profiles in each group belong to a physically different precipitation regime. An independent analysis of the regime properties is conducted by matching the MRMS reflectivity profiles with environmental parameters derived from the High-Resolution Rapid Refresh model forecasts. The distribution of the environmental variables confirms cluster-specific feature properties, confirming the physics-based regime separation across the clusters and their dependence on the vertical structure. The identified precipitation regimes can assist in developing physics-guided retrievals and studying precipitation regimes.

Significance Statement

This study proposes a systematic model to identify precipitation profiles of distinct vertical structures and evaluate their dependence on environmental conditions. The model was developed using ground-based radar observations; however, there is potential to extend this model to reflectivity profiles from both ground- and satellite-based sensors. In addition, the identified precipitation regime clusters could be a proxy for the vertical structure of precipitation systems and assist in determining the structural variability within traditional precipitation type classification (e.g., convective versus stratiform). Moreover, identifying the precipitation regimes could also be used to improve satellite-based precipitation retrievals. Finally, a better understanding of precipitation structure would also help improve the initialization of climate models.

Restricted access
Yalei You
,
Veljko Petkovic
,
Jackson Tan
,
Rachael Kroodsma
,
Wesley Berg
,
Chris Kidd
, and
Christa Peters-Lidard

Abstract

This study assesses the level-2 precipitation estimates from 10 radiometers relative to Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) in two parts. First, nine sensors—four imagers [Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs)] and five sounders [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHSs)]—are evaluated over the 65°S–65°N region. Over ocean, imagers outperform sounders, primarily due to the usage of low-frequency channels. Furthermore, AMSR2 is clearly superior to SSMISs, likely due to the finer footprint size. Over land all sensors perform similarly except the noticeably worse performance from ATMS and SSMIS-F17. Second, we include the Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie (SAPHIR) into the evaluation process, contrasting it against other sensors in the SAPHIR latitudes (30°S–30°N). SAPHIR has a slightly worse detection capability than other sounders over ocean but comparable detection performance to MHSs over land. The intensity estimates from SAPHIR show a larger normalized root-mean-square-error over both land and ocean, likely because only 183.3-GHz channels are available. Currently, imagers are preferred to sounders when level-2 estimates are incorporated into level-3 products. Our results suggest a sensor-specific priority order. Over ocean, this study indicates a priority order of AMSR2, SSMISs, MHSs and ATMS, and SAPHIR. Over land, SSMIS-F17, ATMS and SAPHIR should be given a lower priority than the other sensors.

Free access
Veljko Petković
,
Christian D. Kummerow
,
David L. Randel
,
Jeffrey R. Pierce
, and
John K. Kodros

Abstract

Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.

Full access
Yalei You
,
George Huffman
,
Veljko Petkovic
,
Lisa Milani
,
John X. Yang
,
Ardeshir Ebtehaj
,
Sajad Vahedizade
, and
Guojun Gu

Abstract

This study assesses the level-2 snowfall retrieval results from 11 passive microwave radiometers generated by the version 5 Goddard profiling algorithm (GPROF) relative to two spaceborne radars: CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Measurement (GPM) Ku-band Precipitation Radar (KuPR). These 11 radiometers include six conical scanning radiometers [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), its successor sensor AMSR2, GPM Microwave Imager (GMI), and three Special Sensor Microwave Imager/Sounders (SSMIS)] and five cross-track scanning radiometers [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHS)]. Results show that over ocean conical scanning radiometers have better detection and intensity estimation skills than cross-track sensors, likely due to the availability and usage of the low-frequency channels (e.g., 19 and 37 GHz). Over land, AMSR-E and AMSR2 have noticeably worse performance than other sensors, primarily due to the lack of higher than 89-GHz channels (e.g., 150, 166, and 183 GHz). Over both land and ocean, all 11 sensors severely underestimate the snowfall intensity, which propagates to the widely used level 3 precipitation product [i.e., Integrated Multi-satelliteE Retrievals for GPM (IMERG)]. These conclusions hold regardless of using either KuPR or CPR as the reference, though the statistical metrics vary quantitatively. The conclusions drawn from these comparisons apply solely to the GPROF version 5 algorithm.

Restricted access
Vesta Afzali Gorooh
,
Veljko Petković
,
Malarvizhi Arulraj
,
Phu Nguyen
,
Kuo-lin Hsu
,
Soroosh Sorooshian
, and
Ralph R. Ferraro

Abstract

Reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for understanding the Earth’s hydrological cycle. Precipitation estimation over land and coastal regions is necessary for addressing the high degree of spatial heterogeneity of water availability and demand, and for resolving the extremes that modulate and amplify hazards such as flooding and landslides. Advancements in computation power along with unique high spatiotemporal and spectral resolution data streams from passive meteorological sensors aboard geosynchronous Earth-orbiting (GEO) and low Earth-orbiting (LEO) satellites offer exciting opportunities to retrieve information about surface precipitation phenomena using data-driven machine learning techniques. In this study, the capabilities of U-Net–like architecture are investigated to map instantaneous, summertime surface precipitation intensity at the spatial resolution of 2 km. The calibrated brightness temperature products from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) radiometer are combined with multispectral images (visible, near-infrared, and infrared bands) from the Advanced Baseline Imager (ABI) aboard the GOES-R satellites as main inputs to the U-Net–like precipitation algorithm. Total precipitable water and 2-m temperature from the Global Forecast System (GFS) model are also used as auxiliary inputs to the model. The results show that the U-Net–like algorithm can capture fine-scale patterns and intensity of surface precipitation at high spatial resolution over stratiform and convective precipitation regimes. The evaluations reveal the potential of extracting relevant, high spatial features over complex surface types such as mountainous regions and coastlines. The algorithm allows users to interpret the inputs’ importance and can serve as a starting point for further exploration of precipitation systems within the field of hydrometeorology.

Open access