Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Vernon R. Morris x
  • Refine by Access: All Content x
Clear All Modify Search
DaNa L. Carlis
,
Yi-Leng Chen
, and
Vernon R. Morris

Abstract

The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during July–August 2005. The model forecasts are validated by surface observations with good agreement.

In this study, it is shown that a previously known closed circulation over the Central Valley of Maui, or the Maui vortex, represents the northern cyclonic vortex of the dual-counter-rotating vortices in the lee of Haleakala, which extend up to the base of the trade wind inversion with a westerly reversed flow (>2 m s−1). At low levels, the northern cyclonic vortex is more pronounced than the southern anticyclonic vortex. The asymmetric structure of the dual vortices is related to the shape of Haleakala and the flow deflection by the West Maui Mountains. The Maui vortex has a relatively narrow east–west extent in the lowest levels, especially at night, due to the deflected strong northerly/northeasterly winds from the windward foothills of the West Maui Mountains. Unlike the lee vortices off the leeside coast of the island of Hawaii, the Maui vortex and the westerly return flow in low levels are mainly over land and are strongly modulated by the diurnal heating cycle. In addition, the location and horizontal and vertical extent are affected by the trade wind speed and latent heat release.

Over the West Maui Mountains, with their height below the trade wind inversion, dual-counter-rotating vortices are present below the 1-km level in the wake, with strong downslope flow on the leeside slopes followed by a hydraulic jump. In the afternoon, downslope winds are weak, with combined westerly return/sea-breeze flow along the leeside coast. Orographic blocking is also evident over eastern Molokai with strong downslope winds, especially at night.

Full access
Bingkun Luo
,
Peter J. Minnett
,
Malgorzata Szczodrak
,
Nicholas R. Nalli
, and
Vernon R. Morris

Abstract

Satellite and in situ measurements of the sea surface and the atmosphere often have inadequate sampling frequencies and often lack consistent global coverage. Because of such limitations, reanalysis model output is frequently used in atmospheric and oceanographic research endeavors to complement satellite and in situ data. The National Aeronautics and Space Administration’s (NASA’s) Goddard Earth Sciences Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) datasets provide accurate, complete fields through the assimilation of many atmospheric and surface observations. Still, the reanalysis output data must be rigorously and continuously evaluated to understand their strengths and weaknesses. To this end, this study evaluates sea surface skin temperature (SSTskin) and atmospheric temperature and humidity profiles in MERRA-2 and ERA-Interim data through comparisons with independent Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) and radiosonde data from the Aerosols and Ocean Science Expeditions (AEROSE) cruises, focusing on the representation of spatial and temporal variability. SSTskin values are generally in good agreement with corresponding M-AERI measurements, with the average differences on the order of 0.1 K. Comparisons between MERRA-2 and ERA-Interim relative humidity and air temperature profiles with a total of 553 radiosondes that have been withheld from data assimilation schemes show good correspondence below 500 hPa: the average air temperature difference is <2 K and the average relative humidity discrepancy is within 10%. These results support the use of these MERRA-2 and ERA-Interim reanalysis fields in a variety of research applications.

Free access
Nicholas R. Nalli
,
Christopher D. Barnet
,
Tony Reale
,
Quanhua Liu
,
Vernon R. Morris
,
J. Ryan Spackman
,
Everette Joseph
,
Changyi Tan
,
Bomin Sun
,
Frank Tilley
,
L. Ruby Leung
, and
Daniel Wolfe

Abstract

This paper examines the performance of satellite sounder atmospheric vertical moisture profiles under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs), tropical Hadley cells, and Pacific Ocean atmospheric rivers (ARs). Operational satellite sounder moisture profile retrievals from the Suomi National Polar-Orbiting Partnership (SNPP) NOAA Unique Combined Atmospheric Processing System (NUCAPS) are empirically assessed using collocated dedicated radiosonde observations (raobs) obtained from ocean-based intensive field campaigns. The raobs from these campaigns provide uniquely independent correlative truth data not assimilated into numerical weather prediction (NWP) models for satellite sounder validation over oceans. Although ocean cases are often considered “easy” by the satellite remote sensing community, these hydrometeorological phenomena present challenges to passive sounders, including vertical gradient discontinuities (e.g., strong inversions), as well as persistent uniform clouds, aerosols, and precipitation. It is found that the operational satellite sounder 100-layer moisture profile NUCAPS product performs close to global uncertainty requirements in the SAL/Hadley cell environment, with biases relative to raob within 10% up to 350 hPa. In the more difficult AR environment, bias relative to raob is found to be within 20% up to 400 hPa. In both environments, the sounder moisture retrievals are comparable to NWP model outputs, and cross-sectional analyses show the capability of the satellite sounder for detecting and resolving these tropospheric moisture features, thereby demonstrating a near-real-time forecast utility over these otherwise raob-sparse regions.

Full access
Hua Xie
,
Nicholas R. Nalli
,
Shanna Sampson
,
Walter W. Wolf
,
Jun Li
,
Timothy J. Schmit
,
Christopher D. Barnet
,
Everette Joseph
,
Vernon R. Morris
, and
Fanglin Yang

Abstract

An ocean-based prelaunch evaluation of the Geostationary Operational Environmental Satellite (GOES)-R series Advanced Baseline Imager (ABI) legacy atmospheric profile (LAP) products is conducted using proxy data based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation satellite. SEVIRI-based LAP temperature and moisture profile retrievals are validated against in situ correlative data obtained over the open ocean from multiple years of the National Oceanic and Atmospheric Administration (NOAA) Aerosols and Ocean Science Expeditions (AEROSE). The NOAA AEROSE data include dedicated radiosonde observations (RAOBs) launched from the NOAA ship Ronald H. Brown over the tropical Atlantic: a region optimally situated within the full-disk scanning range of SEVIRI and one of great meteorological importance as the main development area of Atlantic hurricanes. The most recent versions of the GOES-R Algorithm Working Group team algorithms (e.g., cloud mask, aerosol detection products, and LAP) implemented within the algorithms integration team framework (the NOAA operational system that will host these operational product algorithms) are used in the analyses. Forecasts from the National Centers for Environmental Prediction Global Forecasting System (NCEP GFS) are used for the LAP regression and direct comparisons. The GOES-R LAP retrievals are found to agree reasonably with the AEROSE RAOB observations, and overall retrievals improve both temperature and moisture against computer model NCEP GFS outputs. The validation results are then interpreted within the context of a difficult meteorological regime (e.g., Saharan air layers and dust) coupled with the difficulty of using a narrowband imager for the purpose of atmospheric sounding.

Full access
Nicholas R. Nalli
,
Everette Joseph
,
Vernon R. Morris
,
Christopher D. Barnet
,
Walter W. Wolf
,
Daniel Wolfe
,
Peter J. Minnett
,
Malgorzata Szczodrak
,
Miguel A. Izaguirre
,
Rick Lumpkin
,
Hua Xie
,
Alexander Smirnov
,
Thomas S. King
, and
Jennifer Wei

This paper gives an overview of a unique set of ship-based atmospheric data acquired over the tropical Atlantic Ocean during boreal spring and summer as part of ongoing National Oceanic and Atmospheric Administration (NOAA) Aerosols and Ocean Science Expedition (AEROSE) field campaigns. Following the original 2004 campaign onboard the Ronald H. Brown, AEROSE has operated on a yearly basis since 2006 in collaboration with the NOAA Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Northeast Extension (PNE). In this work, attention is given to atmospheric soundings of ozone, temperature, water vapor, pressure, and wind obtained from ozonesondes and radiosondes launched to coincide with low earth orbit environmental satellite overpasses [MetOp and the National Aeronautics and Space Administration (NASA) A-Train]. Data from the PNE/ AEROSE campaigns are unique in their range of marine meteorological phenomena germane to the satellite missions in question, including dust and smoke outflows from Africa, the Saharan air layer (SAL), and the distribution of tropical water vapor and tropical Atlantic ozone. The multiyear PNE/AEROSE sounding data are valuable as correlative data for prelaunch phase validation of the planned Joint Polar Satellite System (JPSS) and NOAA Geosynchronous Operational Environmental Satellite R series (GOES-R) systems, as well as numerous other science applications. A brief summary of these data, along with an overview of some important science highlights, including meteorological phenomena of general interest, is presented.

Full access