Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Vivien Matthias x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Vivien Matthias and Marlene Kretschmer


Understanding and predicting midlatitude cold spells is of scientific and public interest, given often associated severe impacts. However, large-scale atmospheric dynamics related to these events are not fully understood. The winter of 2017/18 was characterized by several cold spells affecting large parts of North America and Eurasia. Here, the role of stratosphere–troposphere coupling for the occurrence of cold spells in this winter is investigated using different wave propagation diagnostics. While the European cold spell in late February 2018 was influenced by a major sudden stratospheric warming (SSW) associated with wave absorption, the cold spells over North America at the end of December 2017 and early February 2018 were related to downward reflected waves over the North Pacific. Previously proposed wave reflection indices, however, either miss these reflection events or are not able to distinguish them from the major SSW related to wave absorption. To overcome this, a novel simple index based on eddy heat flux is proposed here, capturing regional wave reflection over the North Pacific. Reflection events detected with this index are shown to be followed by North Pacific blocking and negative temperature anomalies over North America. An improved understanding of the contribution of wave reflection for cold spells is crucial to better predict such events in the future.

Free access
Sonja Gisinger, Andreas Dörnbrack, Vivien Matthias, James D. Doyle, Stephen D. Eckermann, Benedikt Ehard, Lars Hoffmann, Bernd Kaifler, Christopher G. Kruse, and Markus Rapp


This paper describes the results of a comprehensive analysis of the atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign in austral winter 2014. Different datasets and diagnostics are combined to characterize the background atmosphere from the troposphere to the upper mesosphere. How weather regimes and the atmospheric state compare to climatological conditions is reported upon and how they relate to the airborne and ground-based gravity wave observations is also explored. Key results of this study are the dominance of tropospheric blocking situations and low-level southwesterly flows over New Zealand during June–August 2014. A varying tropopause inversion layer was found to be connected to varying vertical energy fluxes and is, therefore, an important feature with respect to wave reflection. The subtropical jet was frequently diverted south from its climatological position at 30°S and was most often involved in strong forcing events of mountain waves at the Southern Alps. The polar front jet was typically responsible for moderate and weak tropospheric forcing of mountain waves. The stratospheric planetary wave activity amplified in July leading to a displacement of the Antarctic polar vortex. This reduced the stratospheric wind minimum by about 10 m s−1 above New Zealand making breaking of large-amplitude gravity waves more likely. Satellite observations in the upper stratosphere revealed that orographic gravity wave variances for 2014 were largest in May–July (i.e., the period of the DEEPWAVE field phase).

Full access