Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: Volkmar Wirth x
  • Waves to Weather (W2W) x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher Polster
and
Volkmar Wirth

Abstract

Recently, Nakamura and Huang proposed a theory of blocking onset based on the budget of finite-amplitude local wave activity on the midlatitude waveguide. Blocks form in their idealized model due to a mechanism that also describes the emergence of traffic jams in traffic theory. The current work investigates the development of a winter European block in terms of finite-amplitude local wave activity to evaluate the possible relevance of the “traffic jam” mechanism for the flow transition. Two hundred members of a medium-range ensemble forecast of the blocking onset period are analyzed with correlation- and cluster-based sensitivity techniques. Diagnostic evidence points to a traffic jam onset on 17 December 2016. Block development is sensitive to upstream Rossby wave activity up to 1.5 days prior to its initiation and consistent with expectations from the idealized theory. Eastward transport of finite-amplitude local wave activity in the southern part of the block is suppressed by nonlinear flux modification from the large-amplitude blocking pattern, consistent with the expected obstruction in the traffic jam model. The relationship of finite-amplitude local wave activity and its zonal flux as mapped by the ensemble exhibits established characteristics of a traffic jam. This study suggests that the traffic jam mechanism may play an important role in some cases of blocking onset and more generally that applying finite-amplitude local wave activity diagnostics to ensemble data is a promising approach for the further examination of individual onset events in light of the Nakamura and Huang theory.

Significance Statement

Blocking is an occasional phenomenon in the mid- and high-latitude atmosphere characterized by the stalling of weather systems. Episodes of blocking are linked to extreme weather but their occurrence is not completely understood. A recent theory suggests that blocks may form in the jet stream like traffic jams on a highway. The onset mechanism contained in the theory could explain why forecasts of blocking are sometimes poor. In this work, we investigate the formation of a 2016 European winter block in the context of the traffic jam theory. Though questions remain regarding the implications for forecast uncertainty, our findings strongly support the notion of a traffic jam onset.

Open access

Local Rossby Wave Packet Amplitude, Phase Speed, and Group Velocity: Seasonal Variability and Their Role in Temperature Extremes

Georgios Fragkoulidis
and
Volkmar Wirth

Abstract

Transient Rossby wave packets (RWPs) are a prominent feature of the synoptic to planetary upper-tropospheric flow at the midlatitudes. Their demonstrated role in various aspects of weather and climate prompts the investigation of characteristic properties like their amplitude, phase speed, and group velocity. Traditional frameworks for the diagnosis of the two latter have so far remained nonlocal in space or time, thus preventing a detailed view on the spatiotemporal evolution of RWPs. The present work proposes a method for the diagnosis of horizontal Rossby wave phase speed and group velocity locally in space and time. The approach is based on the analytic signal of upper-tropospheric meridional wind velocity and RWP amplitude, respectively. The new diagnostics are first applied to illustrative examples from a barotropic model simulation and the real atmosphere. The main seasonal and interregional variability features of RWP amplitude, phase speed, and group velocity are then explored using ERA5 reanalysis data for the time period 1979–2018. Apparent differences and similarities in these respects between the Northern and Southern Hemispheres are also discussed. Finally, the role of RWP amplitude and phase speed during central European short-lived and persistent temperature extremes is investigated based on changes of their distribution compared to the climatology of the region. The proposed diagnostics offer insight into the spatiotemporal variability of RWP properties and allow the evaluation of their implications at low computational demands.

Open access
Volkmar Wirth
and
Christopher Polster

Abstract

The waveguidability of an upper-tropospheric zonal jet quantifies its propensity to duct Rossby waves in the zonal direction. This property has played a central role in previous attempts to explain large wave amplitudes and the subsequent occurrence of extreme weather. In these studies, waveguidability was diagnosed with the help of ray tracing arguments using the zonal average of the observed flow as the relevant background state. Here, it is argued that this method is problematic both conceptually and mathematically. The issue is investigated in the framework of the nondivergent barotropic model. This model allows the straightforward computation of an alternative “zonalized” background state, which is obtained through conservative symmetrization of potential vorticity contours and that is argued to be superior to the zonal average. Using an idealized prototypical flow configuration with large-amplitude eddies, it is shown that the two different choices for the background state yield very different results; in particular, the zonal-mean background state diagnoses a zonal waveguide, while the zonalized background state does not. This result suggests that the existence of a waveguide in the zonal-mean background state is a consequence of, rather than a precondition for, large wave amplitudes, and it would mean that the direction of causality is opposite to the usual argument. The analysis is applied to two heatwave episodes from summer 2003 and 2010, yielding essentially the same result. It is concluded that previous arguments about the role of waveguidability for extreme weather need to be carefully reevaluated to prevent misinterpretation in the future.

Open access
Paolo Ghinassi
,
Georgios Fragkoulidis
, and
Volkmar Wirth

Abstract

Upper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs and their zonal propagation. This difference in performance is demonstrated more explicitly in the framework of an idealized barotropic model simulation, where LWA is able to follow an RWP into its fully nonlinear stage, including cutoff formation and wave breaking, while the envelope diagnostic yields reduced amplitudes in such situations.

Open access
Gabriel Wolf
and
Volkmar Wirth

Abstract

It has been suggested that upper-tropospheric Rossby wave packets propagating along the midlatitude waveguide may play a role for triggering severe weather. This motivates the search for robust methods to detect and track Rossby wave packets and to diagnose their properties. In the framework of several observed cases, this paper compares different methods that have been proposed for these tasks, with an emphasis on horizontal propagation and on a particular formulation of a wave activity flux previously suggested by Takaya and Nakamura. The utility of this flux is compromised by the semigeostrophic nature of upper-tropospheric Rossby waves, but this problem can partly be overcome by a semigeostrophic coordinate transformation. The wave activity flux allows one to obtain information from a single snapshot about the meridional propagation, in particular propagation from or into polar and subtropical latitudes, as well as about the onset of wave breaking. This helps to clarify the dynamics of individual wave packets in cases where other, more conventional methods provide ambiguous or even misleading information. In some cases, the “true dynamics” of the Rossby wave packet turns out to be more complex than apparent from the more conventional diagnostics, and this may have important implications for the predictability of the wave packet.

Full access
Paolo Ghinassi
,
Marlene Baumgart
,
Franziska Teubler
,
Michael Riemer
, and
Volkmar Wirth

Abstract

Recently, the authors proposed a novel diagnostic to quantify the amplitude of Rossby wave packets. This diagnostic extends the local finite-amplitude wave activity (LWA) of N. Nakamura and collaborators to the primitive-equations framework and combines it with a zonal filter to remove the phase dependence. In the present work, this diagnostic is used to investigate the dynamics of upper-tropospheric Rossby wave packets, with a particular focus on distinguishing between conservative dynamics and nonconservative processes. For this purpose, a budget equation for filtered LWA is derived and its utility is tested in a hierarchy of models. Idealized simulations with a barotropic and a dry primitive-equation model confirm the ability of the LWA diagnostic to identify nonconservative local sources or sinks of wave activity. In addition, the LWA budget is applied to forecast data for an episode in which the amplitude of an upper-tropospheric Rossby wave packet was poorly represented. The analysis attributes deficiencies in the Rossby wave packet amplitude to the misrepresentation of diabatic processes and illuminates the importance of the upper-level divergent outflow as a source for the error in the wave packet amplitude.

Open access
Rachel H. White
,
Kai Kornhuber
,
Olivia Martius
, and
Volkmar Wirth

Abstract

A notable number of high-impact weather extremes have occurred in recent years, often associated with persistent, strongly meandering atmospheric circulation patterns known as Rossby waves. Because of the high societal and ecosystem impacts, it is of great interest to be able to accurately project how such extreme events will change with climate change, and to predict these events on seasonal-to-subseasonal (S2S) time scales. There are multiple physical links connecting upper-atmosphere circulation patterns to surface weather extremes, and it is asking a lot of our dynamical models to accurately simulate all of these. Subsequently, our confidence in future projections and S2S forecasts of extreme events connected to Rossby waves remains relatively low. We also lack full fundamental theories for the growth and propagation of Rossby waves on the spatial and temporal scales relevant to extreme events, particularly under strongly nonlinear conditions. By focusing on one of the first links in the chain from upper-atmospheric conditions to surface extremes—the Rossby waveguide—it may be possible to circumvent some model biases in later links. To further our understanding of the nature of waveguides, links to persistent surface weather events and their representation in models, we recommend exploring these links in model hierarchies of increasing complexity, developing fundamental theory, exploiting novel large ensemble datasets, harnessing deep learning, and increased community collaboration. This would help increase understanding and confidence in both S2S predictions of extremes and of projections of the impact of climate change on extreme weather events.

Full access
Volkmar Wirth
,
Michael Riemer
,
Edmund K. M. Chang
, and
Olivia Martius

Abstract

Rossby wave packets (RWPs) are Rossby waves for which the amplitude has a local maximum and decays to smaller values at larger distances. This review focuses on upper-tropospheric transient RWPs along the midlatitude jet stream. Their central characteristic is the propagation in the zonal direction as well as the transfer of wave energy from one individual trough or ridge to its downstream neighbor, a process called “downstream development.” These RWPs sometimes act as long-range precursors to extreme weather and presumably have an influence on the predictability of midlatitude weather systems. The paper reviews research progress in this area with an emphasis on developments during the last 15 years. The current state of knowledge is summarized including a discussion of the RWP life cycle as well as Rossby waveguides. Recent progress in the dynamical understanding of RWPs has been based, in part, on the development of diagnostic methods. These methods include algorithms to identify and track RWPs in an automated manner, which can be used to extract the climatological properties of RWPs. RWP dynamics have traditionally been investigated using the eddy kinetic energy framework; alternative approaches based on potential vorticity and wave activity fluxes are discussed and put into perspective with the more traditional approach. The different diagnostics are compared to each other and the strengths and weaknesses of individual methods are highlighted. A recurrent theme is the role of diabatic processes, which can be a source for forecast errors. Finally, the paper points to important open research questions and suggests avenues for future research.

Open access
Marlene Baumgart
,
Michael Riemer
,
Volkmar Wirth
,
Franziska Teubler
, and
Simon T. K. Lang

Abstract

Synoptic-scale error growth near the tropopause is investigated from a process-based perspective. Following previous work, a potential vorticity (PV) error tendency equation is derived and partitioned into individual contributions to yield insight into the processes governing error growth near the tropopause. Importantly, we focus here on the further amplification of preexisting errors and not on the origin of errors. The individual contributions to error growth are quantified in a case study of a 6-day forecast. In this case, localized mesoscale error maxima have formed by forecast day 2. These maxima organize into a wavelike pattern and reach the Rossby wave scale around forecast day 6. Error growth occurs most prominently within the Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dominated by the contribution of upper-level, near-tropopause PV anomalies (near-tropopause dynamics). Significant contributions from upper-tropospheric divergent flow (prominently associated with latent heat release below) and lower-tropospheric anomalies [tropospheric-deep (i.e., baroclinic) interaction] are associated with a misrepresentation of the surface cyclone development in the forecast. These contributions are, in general, of smaller importance to error growth than near-tropopause dynamics. This result indicates that the mesoscale errors generated near the tropopause do not primarily project on differences in the subsequent baroclinic growth, but instead directly project on the tropopause evolution and amplify because of differences in the nonlinear Rossby wave dynamics.

Open access
Marlene Baumgart
,
Paolo Ghinassi
,
Volkmar Wirth
,
Tobias Selz
,
George C. Craig
, and
Michael Riemer

Abstract

Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global, real-case ensemble simulations, in which the only difference between the ensemble members lies in the random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the relative importance of individual processes to enstrophy-error growth near the tropopause is quantified. After the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error growth up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the first 12 h, error growth is dominated by differences in the convection scheme. Differences in the upper-tropospheric divergent wind then project these diabatic errors into the tropopause region (day 0.5–2). The subsequent error growth (day 2–14.5) is governed by differences in the nonlinear near-tropopause dynamics. A fourth stage of the error growth is found up to 18 days when the envelope diagnostic indicates error growth from the synoptic up to the planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed in general. However, a novel interpretation of the governing processes is provided. The insight obtained into the dynamics of upscale error growth may help to design representations of uncertainty in operational forecast models and to identify atmospheric conditions that are intrinsically prone to large error amplification.

Open access