Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: W. C. Campbell x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Synoptic views of the entire polar regions of Earth have been obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during December 1972 to February 1973. The major discoveries resulting from an analysis of these data are as follows: 1) Large discrepancies exist between the long-term ice cover depicted in various atlases and the actual extent of the canopies. 2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. 3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. 4) The brightness temperatures of the Greenland and Antarctic glaciers show interesting contours probably related to the ice and snow morphologic structure.
Synoptic views of the entire polar regions of Earth have been obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during December 1972 to February 1973. The major discoveries resulting from an analysis of these data are as follows: 1) Large discrepancies exist between the long-term ice cover depicted in various atlases and the actual extent of the canopies. 2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. 3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. 4) The brightness temperatures of the Greenland and Antarctic glaciers show interesting contours probably related to the ice and snow morphologic structure.
A new radar technique for measuring winds in the lower atmosphere is discussed. It is an extension of the well-known FM-CW technique and has the same advantages of relatively low cost and high flexibility for a clear-air radar. Two different types of wind data from clear-air returns are presented. The first is horizontal wind data by the FM-CW radar; these are compared with winds obtained from a tethered balloon. The second is radial velocities associated with convection cells drifting past the radar. Also, two types of data processing are illustrated. The first is off-line processing of recorded digital data, and the second is real-time processing using a commercial spectrum analyzer.
A new radar technique for measuring winds in the lower atmosphere is discussed. It is an extension of the well-known FM-CW technique and has the same advantages of relatively low cost and high flexibility for a clear-air radar. Two different types of wind data from clear-air returns are presented. The first is horizontal wind data by the FM-CW radar; these are compared with winds obtained from a tethered balloon. The second is radial velocities associated with convection cells drifting past the radar. Also, two types of data processing are illustrated. The first is off-line processing of recorded digital data, and the second is real-time processing using a commercial spectrum analyzer.
Abstract
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.
Abstract
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.