Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: W. D. Hall x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Matt C. Wilbanks, Sandra E. Yuter, Simon P. de Szoeke, W. Alan Brewer, Matthew A. Miller, Andrew M. Hall, and Casey D. Burleyson


Density currents (i.e., cold pools or outflows) beneath marine stratocumulus clouds are characterized using 30 days of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An air density increase criterion applied to the Improved Meteorological (IMET) sensor data identified 71 density current front, core (peak density), and tail (dissipating) zones. The similarity in speeds of the mean density current propagation speed (1.8 m s−1) and the mean cloud-level advection relative to the surface layer wind (1.9 m s−1) allowed drizzle cells to deposit elongated density currents in their wakes. Scanning Doppler lidar captured prefrontal updrafts with a mean intensity of 0.91 m s−1 and an average vertical extent of 800 m. Updrafts were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. The observed density currents were 5–10 times thinner and weaker than typical continental thunderstorm cold pools. Nearly 90% of density currents were identified when C-band radar estimated areal average rain rates exceeded 1 mm day−1 over a 30-km diameter. Rather than peaking when rain rates were highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurred with shallow subcloud dry and stable layers. The dry layers may have contributed to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occurred in a large region of predominantly open cells but also occurred in regions of closed cells.

Full access
David P. Bacon, Nash’at N. Ahmad, Zafer Boybeyi, Thomas J. Dunn, Mary S. Hall, Pius C. S. Lee, R. Ananthakrishna Sarma, Mark D. Turner, Kenneth T. Waight III, Steve H. Young, and John W. Zack


The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) and its embedded Atmospheric Dispersion Model is a new atmospheric simulation system for real-time hazard prediction, conceived out of a need to advance the state of the art in numerical weather prediction in order to improve the capability to predict the transport and diffusion of hazardous releases. OMEGA is based upon an unstructured grid that makes possible a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from a few tens of meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning because its unstructured grid permits the addition of grid elements at any point in space and time. In particular, unstructured grid cells in the horizontal dimension can increase local resolution to better capture topography or the important physical features of the atmospheric circulation and cloud dynamics. This means that OMEGA can readily adapt its grid to stationary surface or terrain features, or to dynamic features in the evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first model to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and hence real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with data.

Full access