Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: W. Frank Staylor x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shartwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The diredional-reflactance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
Abstract
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shartwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The diredional-reflactance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
Abstract
An extensive study has been carried out to validate a satellite technique for estimating downward longwave radiation at the surface. The technique, mostly developed earlier, uses operational sun-synchronous satellite data and a radiative transfer model to provide the surface flux estimates. The satellite-derived fluxes were compared directly with corresponding ground-measured fluxes at four different sites in the United States for a common one-year data period. This provided a study of seasonal variations as well as a diversity of meteorological conditions. Dome heating errors in the ground-measured fluxes were also investigated and were corrected prior to the comparisons. Comparison of the monthly averaged fluxes from the satellite and ground sources for all four sites for the entire year showed a correlation coefficient of 0.98 and a standard error of estimate of 10 W m−2. A brief description of the technique is provided, and the results validating the technique are presented.
Abstract
An extensive study has been carried out to validate a satellite technique for estimating downward longwave radiation at the surface. The technique, mostly developed earlier, uses operational sun-synchronous satellite data and a radiative transfer model to provide the surface flux estimates. The satellite-derived fluxes were compared directly with corresponding ground-measured fluxes at four different sites in the United States for a common one-year data period. This provided a study of seasonal variations as well as a diversity of meteorological conditions. Dome heating errors in the ground-measured fluxes were also investigated and were corrected prior to the comparisons. Comparison of the monthly averaged fluxes from the satellite and ground sources for all four sites for the entire year showed a correlation coefficient of 0.98 and a standard error of estimate of 10 W m−2. A brief description of the technique is provided, and the results validating the technique are presented.
Abstract
A new technique is presented for generating downward longwave flux at the Earth's surface from satellite meteorological data and a radiative transfer model The technique was tested by using TIROS-N data from 41 passes over a ground site covering a period of one month. Satellite-derived fluxes were compared with those measured by a ground-based pyrgeometer during each overpass. The standard error of the satellite-derived fluxes relative to the mean ground-measured values was found to be 6.5%.
Abstract
A new technique is presented for generating downward longwave flux at the Earth's surface from satellite meteorological data and a radiative transfer model The technique was tested by using TIROS-N data from 41 passes over a ground site covering a period of one month. Satellite-derived fluxes were compared with those measured by a ground-based pyrgeometer during each overpass. The standard error of the satellite-derived fluxes relative to the mean ground-measured values was found to be 6.5%.