Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: W. Porch x
- Article x
- Refine by Access: All Content x
Abstract
Studies of wind over complex terrain have been conducted at three times and two locations in Northern California. Instrumentation included conventional cup-vane anemometers and optical anemometers with spatial averaging over path lengths of 0.6-1 km. Autospectra of the path-normal component of wind from the cup-vane and optical anemometers show consistent differences in slope for periods shorter than four hours. The spectral differences are associated more with changes in wind direction than with changes in wind speed.
Abstract
Studies of wind over complex terrain have been conducted at three times and two locations in Northern California. Instrumentation included conventional cup-vane anemometers and optical anemometers with spatial averaging over path lengths of 0.6-1 km. Autospectra of the path-normal component of wind from the cup-vane and optical anemometers show consistent differences in slope for periods shorter than four hours. The spectral differences are associated more with changes in wind direction than with changes in wind speed.
Abstract
Ship-based measurements in June 1994 provided information about ship-track clouds and associated atmospheric environment observed from below cloud levels that provide a perspective different from satellite and aircraft measurements. Surface measurements of latent and sensible heat fluxes, sea surface temperatures, and meteorological profiles with free and tethered balloons provided necessary input conditions for models of ship-track formation and maintenance. Remote sensing measurements showed a coupling of ship plume dynamics and entrainment into overlaying clouds. Morphological and dynamic effects were observed on clouds unique to the ship tracks. These morphological changes included lower cloud bases early in the ship-track formation, evidence of raised cloud bases in more mature tracks, sometimes higher cloud tops, thin cloud-free regions paralleling the tracks, and often stronger radar returns. The ship-based lidar aerosol measurements revealed that ship plumes often interacted with the overlying clouds in an intermittent rather than continuous manner. These observations imply that more must be learned about ship-track dynamics before simple relations between cloud condensation nuclei and cloud brightness can be developed.
Abstract
Ship-based measurements in June 1994 provided information about ship-track clouds and associated atmospheric environment observed from below cloud levels that provide a perspective different from satellite and aircraft measurements. Surface measurements of latent and sensible heat fluxes, sea surface temperatures, and meteorological profiles with free and tethered balloons provided necessary input conditions for models of ship-track formation and maintenance. Remote sensing measurements showed a coupling of ship plume dynamics and entrainment into overlaying clouds. Morphological and dynamic effects were observed on clouds unique to the ship tracks. These morphological changes included lower cloud bases early in the ship-track formation, evidence of raised cloud bases in more mature tracks, sometimes higher cloud tops, thin cloud-free regions paralleling the tracks, and often stronger radar returns. The ship-based lidar aerosol measurements revealed that ship plumes often interacted with the overlying clouds in an intermittent rather than continuous manner. These observations imply that more must be learned about ship-track dynamics before simple relations between cloud condensation nuclei and cloud brightness can be developed.
Abstract
An exploratory field experiment was undertaken to determine the practicality of a method specifically designed to obtain the optical properties of aerosols as they relate to the earth's radiation balance. The method requires a basic set of data consisting of the vertical distribution of aerosol concentrations, size distribution, optical depth, and net radiation fluxes. From these data radiation absorptions are determined, and effective aerosol refractive indices consistent with the actual absorption are deduced through the application of precision radiative transfer calculations. The results of 11 experiment episodes involving a combined aircraft and surface-based measurement system are described. The episodes took place in an arid desert region located near Blythe, California, and in a semiarid agricultural region located near Big Spring, Texas. Part I deals with the physical-numerical depiction of such aerosol properties as optical depth, size distribution, and vertical profiles of concentration. Part II will deal with the analysis of measurements of the radiation field leading to the deduction of the effective aerosol refractive index compatible with the absorption of solar radiation.
Abstract
An exploratory field experiment was undertaken to determine the practicality of a method specifically designed to obtain the optical properties of aerosols as they relate to the earth's radiation balance. The method requires a basic set of data consisting of the vertical distribution of aerosol concentrations, size distribution, optical depth, and net radiation fluxes. From these data radiation absorptions are determined, and effective aerosol refractive indices consistent with the actual absorption are deduced through the application of precision radiative transfer calculations. The results of 11 experiment episodes involving a combined aircraft and surface-based measurement system are described. The episodes took place in an arid desert region located near Blythe, California, and in a semiarid agricultural region located near Big Spring, Texas. Part I deals with the physical-numerical depiction of such aerosol properties as optical depth, size distribution, and vertical profiles of concentration. Part II will deal with the analysis of measurements of the radiation field leading to the deduction of the effective aerosol refractive index compatible with the absorption of solar radiation.
Abstract
The experimental results in Part I are used in the theoretical interpretation of the radiation flux measurements which were taken with an aircraft. The absorption term of the complex refractive index of aerosols is estimated to be approximately 0.01 for a real part of 1.5 for the wavelength bandwidth 0.32–0.68 μm. A regional variation in the refractive index is noted.
Atmospheric heating and cooling rates due to aerosol and molecular absorption in the solar and terrestrial wavelengths are determined from the radiation flux measurements. The magnitudes of these rates are compared and their relative importance is discussed.
Abstract
The experimental results in Part I are used in the theoretical interpretation of the radiation flux measurements which were taken with an aircraft. The absorption term of the complex refractive index of aerosols is estimated to be approximately 0.01 for a real part of 1.5 for the wavelength bandwidth 0.32–0.68 μm. A regional variation in the refractive index is noted.
Atmospheric heating and cooling rates due to aerosol and molecular absorption in the solar and terrestrial wavelengths are determined from the radiation flux measurements. The magnitudes of these rates are compared and their relative importance is discussed.
The Arm Program's Water Vapor Intensive Observation Periods
Overview, Initial Accomplishments, and Future Challenges
A series of water vapor intensive observation periods (WVIOPs) were conducted at the Atmospheric Radiation Measurement (ARM) site in Oklahoma between 1996 and 2000. The goals of these WVIOPs are to characterize the accuracy of the operational water vapor observations and to develop techniques to improve the accuracy of these measurements.
The initial focus of these experiments was on the lower atmosphere, for which the goal is an absolute accuracy of better than 2% in total column water vapor, corresponding to ~1 W m−2 of infrared radiation at the surface. To complement the operational water vapor instruments during the WVIOPs, additional instrumentation including a scanning Raman lidar, microwave radiometers, chilled-mirror hygrometers, a differential absorption lidar, and ground-based solar radiometers were deployed at the ARM site. The unique datasets from the 1996, 1997, and 1999 experiments have led to many results, including the discovery and characterization of a large (> 25%) sonde-to-sonde variability in the water vapor profiles from Vaisala RS-80H radiosondes that acts like a height-independent calibration factor error. However, the microwave observations provide a stable reference that can be used to remove a large part of the sonde-to-sonde calibration variability. In situ capacitive water vapor sensors demonstrated agreement within 2% of chilled-mirror hygrometers at the surface and on an instrumented tower. Water vapor profiles retrieved from two Raman lidars, which have both been calibrated to the ARM microwave radiometer, showed agreement to within 5% for all altitudes below 8 km during two WVIOPs. The mean agreement of the total precipitable water vapor from different techniques has converged significantly from early analysis that originally showed differences up to 15%. Retrievals of total precipitable water vapor (PWV) from the ARM microwave radiometer are now found to be only 3% moister than PWV derived from new GPS results, and about 2% drier than the mean of radiosonde data after a recently defined sonde dry-bias correction is applied. Raman lidar profiles calibrated using tower-mounted chilled-mirror hygrometers confirm the expected sensitivity of microwave radiometer data to water vapor changes, but it is drier than the microwave radiometer (MWR) by 0.95 mm for all PWV amounts. However, observations from different collocated microwave radiometers have shown larger differences than expected and attempts to resolve the remaining inconsistencies (in both calibration and forward modeling) are continuing.
The paper concludes by outlining the objectives of the recent 2000 WVIOP and the ARM–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX), the latter of which switched the focus to characterizing upper-tropospheric humidity measurements.
A series of water vapor intensive observation periods (WVIOPs) were conducted at the Atmospheric Radiation Measurement (ARM) site in Oklahoma between 1996 and 2000. The goals of these WVIOPs are to characterize the accuracy of the operational water vapor observations and to develop techniques to improve the accuracy of these measurements.
The initial focus of these experiments was on the lower atmosphere, for which the goal is an absolute accuracy of better than 2% in total column water vapor, corresponding to ~1 W m−2 of infrared radiation at the surface. To complement the operational water vapor instruments during the WVIOPs, additional instrumentation including a scanning Raman lidar, microwave radiometers, chilled-mirror hygrometers, a differential absorption lidar, and ground-based solar radiometers were deployed at the ARM site. The unique datasets from the 1996, 1997, and 1999 experiments have led to many results, including the discovery and characterization of a large (> 25%) sonde-to-sonde variability in the water vapor profiles from Vaisala RS-80H radiosondes that acts like a height-independent calibration factor error. However, the microwave observations provide a stable reference that can be used to remove a large part of the sonde-to-sonde calibration variability. In situ capacitive water vapor sensors demonstrated agreement within 2% of chilled-mirror hygrometers at the surface and on an instrumented tower. Water vapor profiles retrieved from two Raman lidars, which have both been calibrated to the ARM microwave radiometer, showed agreement to within 5% for all altitudes below 8 km during two WVIOPs. The mean agreement of the total precipitable water vapor from different techniques has converged significantly from early analysis that originally showed differences up to 15%. Retrievals of total precipitable water vapor (PWV) from the ARM microwave radiometer are now found to be only 3% moister than PWV derived from new GPS results, and about 2% drier than the mean of radiosonde data after a recently defined sonde dry-bias correction is applied. Raman lidar profiles calibrated using tower-mounted chilled-mirror hygrometers confirm the expected sensitivity of microwave radiometer data to water vapor changes, but it is drier than the microwave radiometer (MWR) by 0.95 mm for all PWV amounts. However, observations from different collocated microwave radiometers have shown larger differences than expected and attempts to resolve the remaining inconsistencies (in both calibration and forward modeling) are continuing.
The paper concludes by outlining the objectives of the recent 2000 WVIOP and the ARM–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX), the latter of which switched the focus to characterizing upper-tropospheric humidity measurements.