Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Wei Gong x
  • Earth Interactions x
  • Refine by Access: All Content x
Clear All Modify Search
Aiwen Lin, Hongji Zhu, Lunche Wang, Wei Gong, and Ling Zou

Abstract

Measurements of air temperature and precipitation at 35 stations in Hubei Province, China, during 1962–2011 are used to investigate the regional climate change. There is an increasing trend for observed air temperature (0.23°C decade−1), which is slightly higher than that from multiple model simulations/predictions [phase 5 of CMIP (CMIP5) datasets] (0.16°C decade−1). The observed precipitation increases at the rate of 11.4 mm decade−1, while the CMIP5 results indicate a much lower decreasing trend (0.8 mm decade−1) in this region. To examine the ecological responses to the climate changes in Hubei Province, annual gross primary productivity (GPP) and net primary productivity (NPP) products during 2000–10 and leaf area index (LAI) products during 1981–2011 are also analyzed. It is discovered that GPP, NPP, and LAI increase at the rate of 1.8 TgC yr−1 yr−1, 1.1 TgC yr−1 yr−1, and 0.14 m2 m−2 decade−1, respectively. A linear model is further used to conduct the correlation analyses between climatic parameters (i.e., air temperature and precipitation) and ecological indicators (i.e., GPP, NPP, and LAI). The results indicate that the air temperature has a significant positive correlation with LAI (R 2 = 0.311) and GPP (R 2 = 0.189); precipitation is positively correlated with NPP (R 2 = 0.209). Thus, it is concluded that the air temperature exerts a stronger effect on the ecosystem than precipitation in Hubei Province over the past decades.

Full access
Lunche Wang, Wei Gong, Yingying Ma, and Miao Zhang

Abstract

Net primary productivity (NPP) is an important component of the carbon cycle and a key indicator of ecosystem performance. The aim of this study is to construct a more accurate regional vegetation NPP estimation model and explore the relationship between NPP and climatic factors (air temperature, rainfall, sunshine hours, relative humidity, air pressure, global radiation, and surface net radiation). As a key variable in NPP modeling, photosynthetically active radiation (PAR) was obtained by finding a linear relationship between PAR and horizontal direct radiation, scattered radiation, and net radiation with high accuracy. The fraction of absorbed photosynthetically active radiation (FPAR) was estimated by enhanced vegetation index (EVI) instead of the widely used normalized difference vegetation index (NDVI). Stress factors of temperature/humidity for different types of vegetation were also considered in the simulation of light use efficiencies (LUE). The authors used EVI datasets of Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2011 and geographic information techniques to reveal NPP variations in Wuhan. Time lagged serial correlation analysis was employed to study the delayed and continuous effects of climatic factors on NPP. The results showed that the authors’ improved model can simulate vegetation NPP in Wuhan effectively, and it may be adopted or used in other regions of the world that need to be further tested. The results indicated that air temperature and air pressure contributed significantly to the interannual changes of plant NPP while rainfall and global radiation were major climatic factors influencing seasonal NPP variations. A significant positive 32-day lagged correlation was observed between seasonal variation of NPP and rainfall (P < 0.01); the influence of changing climate on NPP lasted for 64 days. The impact of air pressure, global radiation, and net radiation on NPP persisted for 48 days, while the effects of sunshine hours and air temperature on NPP only lasted for 16 and 32 days, respectively.

Full access