Search Results

You are looking at 1 - 10 of 142 items for

  • Author or Editor: Wei Li x
  • Refine by Access: All Content x
Clear All Modify Search
Wei Li
and
Courtney Schumacher

Abstract

This study investigates anvils from thick, nonprecipitating clouds associated with deep convection as observed in the tropics by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) during the 10-yr period, 1998–2007. Anvils observable by the PR occur, on average, 5 out of every 100 days within grid boxes with 2.5° resolution and with a conditional areal coverage of 1.5%. Unconditional areal coverage is only a few tenths of a percent. Anvils also had an average 17-dBZ echo top of ∼8.5 km and an average thickness of ∼2.7 km. Anvils were usually higher and thicker over land compared to ocean, and occurred most frequently over Africa, the Maritime Continent, and Panama. Anvil properties were intimately tied to the properties of the parent convection. In particular, anvil area and echo-top heights were highly correlated to convective rain area. The next best predictor for anvil areal coverage and echo tops was convective echo tops, while convective reflectivities had the weakest correlation. Strong upper-level wind shear also may be associated with anvil occurrence over land, especially when convection regularly attains echo-top heights greater than 7 km. Some tropical land regions, especially those affected by monsoon circulations, experience significant seasonal variability in anvil properties—strong interannual anvil variability occurs over the central Pacific because of the El Niño–Southern Oscillation. Compared to the CloudSat Cloud Profiling Radar, the TRMM PR underestimates anvil-top height by an average of ∼5 km and underestimates their horizontal extent by an average factor of 4.

Full access
Wei Mei
and
Shuo Li

Abstract

The variability and predictability of tropical cyclone genesis frequency (TCGF) during 1973–2010 at both basinwide and sub-basin scales in the northwest Pacific are investigated using a 100-member ensemble of 60-km-resolution atmospheric simulations that are forced with observed sea surface temperatures (SSTs). The sub-basin regions include the South China Sea (SCS) and the four quadrants of the open ocean. The ensemble-mean results well reproduce the observed interannual-to-decadal variability of TCGF in the southeast (SE), northeast (NE), and northwest (NW) quadrants, but show limited skill in the SCS and the southwest (SW) quadrant. The skill in the SE and NE quadrants is responsible for the model’s ability to replicate the observed variability in basinwide TCGF. Above-normal TCGF is tied to enhanced relative SST (i.e., local SST minus tropical-mean SST) either locally or to the southeast of the corresponding regions in both the observations and ensemble mean for the SE, NE, and NW quadrants, but only in the ensemble mean for the SCS and the SW quadrant. These results demonstrate the strong SST control of TCGF in the SE, NE, and NW quadrants; both empirical and theoretical analyses suggest that ensembles of ∼10, 20, 35, and 15 members can capture the SST-forced TCGF variability in these three sub-basin regions and the entire basin, respectively. In the SW quadrant and the SCS, TCGF contains excessive noise, particularly in the observations, and thus shows low predictability. The variability and predictability of the large-scale atmospheric environment and synoptic-scale disturbances and their contributions to those of TCGF are also discussed.

Free access
Wei Li
and
Xiaohui Xie

Abstract

It is well known that strong low-mode internal tides generated in Luzon Strait propagate westward to impinge continental slopes in the northeastern South China Sea (SCS). The reflection and scattering of these internal tides including diurnal and semidiurnal components on the slopes are quantitatively investigated using two sets of mooring data and a linear internal tide model with realistic topography and stratification. Flux reflections computed from mooring data collected on the continental slopes are consistent with the linear model. Based on the results of the observations and simulations, a map of low-mode internal tide reflection and scattering coefficients along the continental margin in the northeastern SCS is revealed. On average, diurnal internal tides lose 38% of their energy to high modes (≥mode 4) that are assumed to dissipate on the slopes, transmit 28% onto the continental shelf, and reflect 31% back to the deep ocean. On the contrary, most of the semidiurnal energy (89%) transmits onto the continental shelf, and only 11% is scattered to high modes (7%) and reflected back to the deep ocean (4%). For diurnal internal tides, a large fraction of energy that is scattered to high modes and reflected back to the deep sea can be attributed to the critical–supercritical slopes, while the weak reflection for the semidiurnal energy is due to the subcritical slopes. These quantitative descriptions for evolutions of low-mode internal tides incident to the slopes provide an energy budget map on the continental slopes in the northeastern SCS.

Restricted access
Shuo Li
and
Wei Mei

Abstract

The small sample size of tropical cyclone (TC) genesis in the observations prevents us from fully characterizing its spatiotemporal variations. Here we take advantage of a large ensemble of 60-km-resolution atmospheric simulations to address this issue over the northwest Pacific (NWP) during 1951–2010. The variations in annual TC genesis density are explored separately on interannual and decadal time scales. The interannual variability is dominated by two leading modes. One is characterized by a dipole pattern, and its temporal evolution is closely linked to the developing ENSO. The other mode features high loadings in the central part of the basin, with out-of-phase changes near the equator and date line, and tends to occur during ENSO decay years. On decadal time scales, TC genesis density variability is primarily controlled by one mode, which exhibits an east–west dipole pattern with strong signals confined to south of 20°N and is tied to the interdecadal Pacific oscillation–like sea surface temperature anomalies. Further, we investigate the seasonal evolution of the ENSO effect on TC genesis density. The results highlight the distinct impacts of the two types of ENSO (i.e., eastern Pacific vs central Pacific) on TC genesis density in the NWP during a specific season and show the strong seasonal dependency of the TC genesis response to ENSO. Although the results from the observations are not as prominent as those from the simulations because of the small sample size, the high consistency between them demonstrates the fidelity of the model in reproducing TC statistics and variability in the observations.

Restricted access
Qin Xu
and
Li Wei

Abstract

The method of statistical analysis of wind innovation (observation minus forecast) vectors is refined upon the work of Hollingsworth and Lönnberg (HL). The new refinements include (i) improved spectral representations of wind forecast error covariance functions, and (ii) simplified and yet more rigorously constrained formulations for multilevel analysis. The method is applied to wind innovation data over North America from the Navy Operational Global Atmospheric Prediction System (NOGAPS). The major products of the analysis include (i) wind observation error variance and vertical correlation, (ii) wind forecast error covariances as functions of height and horizontal distance, (iii) their spectra as functions of height and horizontal wavenumber, and (iv) partitioned vector wind error variances and correlation structures for the large-scale and synoptic-scale components and for the rotational and divergent components of synoptic scale. The results are compared with HL, showing a 20% overall reduction in wind forecast errors and a slight reduction in wind observation errors for the NOGAPS data in comparison with the European Centre for Medium-Range Weather Forecasts (ECMWF) global model data 16 years ago. The spatial structures of the estimated observation and forecast error correlation functions are found to be roughly comparable to those in HL.

Full access
Qin Xu
and
Li Wei

Abstract

The method of statistical analysis of wind innovation (observation minus forecast) vectors is extended and applied to the innovation data collected over North America for a 3-month period from the Navy Operational Global Atmospheric Prediction System to estimate the height–wind forecast error correlation and to evaluate the related geostrophy. Both single-level and multilevel analyses are performed. The single-level analysis shows that the geostrophy is well satisfied in the middle troposphere but is not well satisfied in the boundary layer and around the tropopause. The multilevel analysis indicates that the cross correlation between height and tangential wind forecast errors at different vertical levels is not small and thus should not be neglected.

Full access
Qin Xu
and
Li Wei

Abstract

The prognostic equation for the radial velocity field observed with a Doppler radar is derived to include the effects of atmospheric refraction and earth curvature on radar-beam height and slope angle. The derived equation, called the radial velocity equation, contains a high-order small term that can be truncated. The truncated radial velocity equation is shown to be much more accurate than its counterpart radial velocity equation derived without considering the effects of atmospheric refraction and earth curvature. The truncated equation has the same concise form as its counterpart radial velocity equation but remains to be sufficiently accurate as a useful dynamic constraint for radar wind analysis and assimilation (in normal situations) even up to the farthest 300-km radial range of operational Weather Surveillance Radar-1988 Doppler (WSR-88D) scans where its counterpart radial velocity equation becomes erroneous.

Full access
Qin Xu
and
Li Wei

Abstract

When the vortex center location is estimated from a radar-scanned tornadic mesocyclone, the estimated location is not error-free. This raises an important issue concerning the sensitivities of analyzed vortex flow (VF) fields by the VF-Var (formulated in Part I of this paper series and tested in Part II) to vortex center location errors, denoted by Δx c . Numerical experiments are performed to address this issue with the following findings: The increase of |Δx c | from zero to a half of vortex core radius causes large analysis error increases in the vortex core but the increased analysis errors decrease rapidly away from the vortex core especially for dual-Doppler analyses. The increased horizontal-velocity errors in the vortex core are mainly in the Δx c -normal component, because this component varies much more rapidly than the other component along the Δx c direction in the vortex core. The vertical variations of Δx c distort the vertical correlation structure of Δx c -dislocated VF-dependent background error covariance, which can increase the analysis errors in the vortex core. The dual-Doppler analyses have adequate accuracies outside the vortex core even when |Δx c | increases to a half of vortex core radius, while single-Doppler analyses can also have adequate accuracies outside the vortex core mainly for the single-Doppler-observed velocity component. The sensitivities to Δx c are largely unaffected by the vortex slanting. The above findings are important and useful for assessing the accuracies of analyzed VFs for real radar-observed tornadic mesocyclones.

Significance Statement

When the vortex center location is estimated from a radar-scanned tornadic mesocyclone, the estimated location is not error-free. This raises an issue concerning the sensitivity of analyzed vortex flow (VF) by the VF-Var (formulated in Part I of this paper series and tested with simulated radar observations in Part II) to vortex center location error. This issue and its required investigations are very important for the VF-Var to be applied to real radar-observed tornadic mesocyclones, especially in an operational setting with the WSR-88Ds. Numerical experiments are performed to address this issue. The findings from these experiments are important and useful for assessing the accuracies of VF-Var analyzed VF fields for real radar-observed tornadic mesocyclones.

Full access
Qin Xu
and
Li Wei

Abstract

The variational method formulated in Part I for analyzing vortex flow (VF), called VF-Var, is tested with simulated radar radial-velocity observations from idealized and pseudo-operational Doppler scans of analytically formulated benchmark vortices with spiral-band structures to resemble VFs in observed tornadic mesocyclones. The idealized Doppler scans are unidirectional in parallel along horizontal grid lines of a coarse-resolution grid, so they measure only the horizontal components of three-dimensional velocities in the analysis domain. The pseudo-operational Doppler scans mimic a scan mode used by operational WSR-88Ds for severe storms. Paired numerical experiments are designed and performed to test the two-step analysis versus single-step analysis formulated in VF-Var. Both analyses perform very well with dual-Doppler scans and reasonably well with single-Doppler scans. Errors in the analyzed velocities from single-Doppler scans are mainly in the unobserved velocity components and only in fractions of the benchmark velocities. When the vortex is upright or slanted in the direction perpendicular to idealized single-Doppler scans, the two-step analysis slightly outperforms the single-step analysis for idealized Doppler scans and pseudo-operational dual-Doppler scans. When the vortex becomes slanted in the direction largely along or against Doppler scans, both analyses become less (more) accurate in analyzing the horizontal (slantwise vertical) velocity, and the single-step analysis outperforms the two-step analysis especially for single-Doppler scans. By considering the projections of analyzed velocity on radar beams in the original Cartesian coordinates, useful insights are gained for understanding why and how the analysis accuracies are affected by vortex slanting.

Full access
Wei Li
,
Zhihong Jiang
, and
Laurent Li

Abstract

CMIP6 simulations suggest that the probability of the compound hot and dry event occurring in summer 2022 in the Yangtze River basin in China is enhanced by anthropogenic effect by 7 times.

Open access