Search Results
You are looking at 1 - 10 of 15 items for :
- Author or Editor: Wei Li x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
The prognostic equation for the radial velocity field observed with a Doppler radar is derived to include the effects of atmospheric refraction and earth curvature on radar-beam height and slope angle. The derived equation, called the radial velocity equation, contains a high-order small term that can be truncated. The truncated radial velocity equation is shown to be much more accurate than its counterpart radial velocity equation derived without considering the effects of atmospheric refraction and earth curvature. The truncated equation has the same concise form as its counterpart radial velocity equation but remains to be sufficiently accurate as a useful dynamic constraint for radar wind analysis and assimilation (in normal situations) even up to the farthest 300-km radial range of operational Weather Surveillance Radar-1988 Doppler (WSR-88D) scans where its counterpart radial velocity equation becomes erroneous.
Abstract
The prognostic equation for the radial velocity field observed with a Doppler radar is derived to include the effects of atmospheric refraction and earth curvature on radar-beam height and slope angle. The derived equation, called the radial velocity equation, contains a high-order small term that can be truncated. The truncated radial velocity equation is shown to be much more accurate than its counterpart radial velocity equation derived without considering the effects of atmospheric refraction and earth curvature. The truncated equation has the same concise form as its counterpart radial velocity equation but remains to be sufficiently accurate as a useful dynamic constraint for radar wind analysis and assimilation (in normal situations) even up to the farthest 300-km radial range of operational Weather Surveillance Radar-1988 Doppler (WSR-88D) scans where its counterpart radial velocity equation becomes erroneous.
Abstract
When the vortex center location is estimated from a radar-scanned tornadic mesocyclone, the estimated location is not error-free. This raises an important issue concerning the sensitivities of analyzed vortex flow (VF) fields by the VF-Var (formulated in Part I of this paper series and tested in Part II) to vortex center location errors, denoted by Δx c . Numerical experiments are performed to address this issue with the following findings: The increase of |Δx c | from zero to a half of vortex core radius causes large analysis error increases in the vortex core but the increased analysis errors decrease rapidly away from the vortex core especially for dual-Doppler analyses. The increased horizontal-velocity errors in the vortex core are mainly in the Δx c -normal component, because this component varies much more rapidly than the other component along the Δx c direction in the vortex core. The vertical variations of Δx c distort the vertical correlation structure of Δx c -dislocated VF-dependent background error covariance, which can increase the analysis errors in the vortex core. The dual-Doppler analyses have adequate accuracies outside the vortex core even when |Δx c | increases to a half of vortex core radius, while single-Doppler analyses can also have adequate accuracies outside the vortex core mainly for the single-Doppler-observed velocity component. The sensitivities to Δx c are largely unaffected by the vortex slanting. The above findings are important and useful for assessing the accuracies of analyzed VFs for real radar-observed tornadic mesocyclones.
Significance Statement
When the vortex center location is estimated from a radar-scanned tornadic mesocyclone, the estimated location is not error-free. This raises an issue concerning the sensitivity of analyzed vortex flow (VF) by the VF-Var (formulated in Part I of this paper series and tested with simulated radar observations in Part II) to vortex center location error. This issue and its required investigations are very important for the VF-Var to be applied to real radar-observed tornadic mesocyclones, especially in an operational setting with the WSR-88Ds. Numerical experiments are performed to address this issue. The findings from these experiments are important and useful for assessing the accuracies of VF-Var analyzed VF fields for real radar-observed tornadic mesocyclones.
Abstract
When the vortex center location is estimated from a radar-scanned tornadic mesocyclone, the estimated location is not error-free. This raises an important issue concerning the sensitivities of analyzed vortex flow (VF) fields by the VF-Var (formulated in Part I of this paper series and tested in Part II) to vortex center location errors, denoted by Δx c . Numerical experiments are performed to address this issue with the following findings: The increase of |Δx c | from zero to a half of vortex core radius causes large analysis error increases in the vortex core but the increased analysis errors decrease rapidly away from the vortex core especially for dual-Doppler analyses. The increased horizontal-velocity errors in the vortex core are mainly in the Δx c -normal component, because this component varies much more rapidly than the other component along the Δx c direction in the vortex core. The vertical variations of Δx c distort the vertical correlation structure of Δx c -dislocated VF-dependent background error covariance, which can increase the analysis errors in the vortex core. The dual-Doppler analyses have adequate accuracies outside the vortex core even when |Δx c | increases to a half of vortex core radius, while single-Doppler analyses can also have adequate accuracies outside the vortex core mainly for the single-Doppler-observed velocity component. The sensitivities to Δx c are largely unaffected by the vortex slanting. The above findings are important and useful for assessing the accuracies of analyzed VFs for real radar-observed tornadic mesocyclones.
Significance Statement
When the vortex center location is estimated from a radar-scanned tornadic mesocyclone, the estimated location is not error-free. This raises an issue concerning the sensitivity of analyzed vortex flow (VF) by the VF-Var (formulated in Part I of this paper series and tested with simulated radar observations in Part II) to vortex center location error. This issue and its required investigations are very important for the VF-Var to be applied to real radar-observed tornadic mesocyclones, especially in an operational setting with the WSR-88Ds. Numerical experiments are performed to address this issue. The findings from these experiments are important and useful for assessing the accuracies of VF-Var analyzed VF fields for real radar-observed tornadic mesocyclones.
Abstract
The variational method formulated in Part I for analyzing vortex flow (VF), called VF-Var, is tested with simulated radar radial-velocity observations from idealized and pseudo-operational Doppler scans of analytically formulated benchmark vortices with spiral-band structures to resemble VFs in observed tornadic mesocyclones. The idealized Doppler scans are unidirectional in parallel along horizontal grid lines of a coarse-resolution grid, so they measure only the horizontal components of three-dimensional velocities in the analysis domain. The pseudo-operational Doppler scans mimic a scan mode used by operational WSR-88Ds for severe storms. Paired numerical experiments are designed and performed to test the two-step analysis versus single-step analysis formulated in VF-Var. Both analyses perform very well with dual-Doppler scans and reasonably well with single-Doppler scans. Errors in the analyzed velocities from single-Doppler scans are mainly in the unobserved velocity components and only in fractions of the benchmark velocities. When the vortex is upright or slanted in the direction perpendicular to idealized single-Doppler scans, the two-step analysis slightly outperforms the single-step analysis for idealized Doppler scans and pseudo-operational dual-Doppler scans. When the vortex becomes slanted in the direction largely along or against Doppler scans, both analyses become less (more) accurate in analyzing the horizontal (slantwise vertical) velocity, and the single-step analysis outperforms the two-step analysis especially for single-Doppler scans. By considering the projections of analyzed velocity on radar beams in the original Cartesian coordinates, useful insights are gained for understanding why and how the analysis accuracies are affected by vortex slanting.
Abstract
The variational method formulated in Part I for analyzing vortex flow (VF), called VF-Var, is tested with simulated radar radial-velocity observations from idealized and pseudo-operational Doppler scans of analytically formulated benchmark vortices with spiral-band structures to resemble VFs in observed tornadic mesocyclones. The idealized Doppler scans are unidirectional in parallel along horizontal grid lines of a coarse-resolution grid, so they measure only the horizontal components of three-dimensional velocities in the analysis domain. The pseudo-operational Doppler scans mimic a scan mode used by operational WSR-88Ds for severe storms. Paired numerical experiments are designed and performed to test the two-step analysis versus single-step analysis formulated in VF-Var. Both analyses perform very well with dual-Doppler scans and reasonably well with single-Doppler scans. Errors in the analyzed velocities from single-Doppler scans are mainly in the unobserved velocity components and only in fractions of the benchmark velocities. When the vortex is upright or slanted in the direction perpendicular to idealized single-Doppler scans, the two-step analysis slightly outperforms the single-step analysis for idealized Doppler scans and pseudo-operational dual-Doppler scans. When the vortex becomes slanted in the direction largely along or against Doppler scans, both analyses become less (more) accurate in analyzing the horizontal (slantwise vertical) velocity, and the single-step analysis outperforms the two-step analysis especially for single-Doppler scans. By considering the projections of analyzed velocity on radar beams in the original Cartesian coordinates, useful insights are gained for understanding why and how the analysis accuracies are affected by vortex slanting.
Abstract
The variational method for vortex flow (VF) analyses, called VF-Var (formulated in Part I), is applied to the 20 May 2013 Newcastle–Moore tornadic mesocyclone observed from the operational KTLX radar and an experimental phased-array radar. The dual-Doppler-analyzed VF field reveals the following features: The axisymmetric part of the VF is a well-defined slantwise two-cell vortex in which the maximum tangential velocity is nearly 40 m s−1 at the edge of the vortex core (0.6 km from the vortex center), the central downdraft velocity reaches −35 m s−1 at 3-km height, and the surrounding-updraft velocity reaches 26 m s−1 at 5-km height. The total VF field is a loosely defined slantwise two-cell vortex consisting of a nearly axisymmetric vortex core (in which the ground-relative surface wind speed reaches 50 m s−1 on the southeast edge), a strong nonaxisymmetric slantwise downdraft in the vortex core, and a main updraft in a banana-shaped area southeast of the vortex core, which extends slantwise upward and spirals cyclonically around the vortex core. The single-Doppler analysis with observations from the KTLX radar only exhibits roughly the same features as the dual-Doppler analysis but contains spurious vertical-motion structures in and around the vortex core. Analysis errors are assessed by leveraging the findings from Parts II and III, which indicate that the dual-Doppler-analyzed VF is accurate enough to represent the true VF but the single-Doppler-analyzed VF is not (especially for nonaxisymmetric vertical motions in and around the vortex core), so the dual-Doppler-analyzed VF should be useful for initializing/verifying high-resolution tornado simulations.
Significance Statement
After the variational method for vortex flow (VF) analyses, called VF-Var (formulated in Part I of this paper series), was tested successfully with simulated radar observations in Part II and its sensitivity to vortex center location error was examined in Part III, the method is now applied to the 20 May 2013 Newcastle–Moore tornadic mesocyclone observed from the operational KTLX radar and an experimental phased-array radar. Analysis errors are assessed by leveraging the findings from Parts II and III. The results indicate that the dual-Doppler-analyzed VF is accurate enough to represent the true VF (although the single-Doppler-analyzed VF is not especially for nonaxisymmetric vertical motions in and around the vortex core) and thus should be useful for initializing/verifying high-resolution tornado simulations.
Abstract
The variational method for vortex flow (VF) analyses, called VF-Var (formulated in Part I), is applied to the 20 May 2013 Newcastle–Moore tornadic mesocyclone observed from the operational KTLX radar and an experimental phased-array radar. The dual-Doppler-analyzed VF field reveals the following features: The axisymmetric part of the VF is a well-defined slantwise two-cell vortex in which the maximum tangential velocity is nearly 40 m s−1 at the edge of the vortex core (0.6 km from the vortex center), the central downdraft velocity reaches −35 m s−1 at 3-km height, and the surrounding-updraft velocity reaches 26 m s−1 at 5-km height. The total VF field is a loosely defined slantwise two-cell vortex consisting of a nearly axisymmetric vortex core (in which the ground-relative surface wind speed reaches 50 m s−1 on the southeast edge), a strong nonaxisymmetric slantwise downdraft in the vortex core, and a main updraft in a banana-shaped area southeast of the vortex core, which extends slantwise upward and spirals cyclonically around the vortex core. The single-Doppler analysis with observations from the KTLX radar only exhibits roughly the same features as the dual-Doppler analysis but contains spurious vertical-motion structures in and around the vortex core. Analysis errors are assessed by leveraging the findings from Parts II and III, which indicate that the dual-Doppler-analyzed VF is accurate enough to represent the true VF but the single-Doppler-analyzed VF is not (especially for nonaxisymmetric vertical motions in and around the vortex core), so the dual-Doppler-analyzed VF should be useful for initializing/verifying high-resolution tornado simulations.
Significance Statement
After the variational method for vortex flow (VF) analyses, called VF-Var (formulated in Part I of this paper series), was tested successfully with simulated radar observations in Part II and its sensitivity to vortex center location error was examined in Part III, the method is now applied to the 20 May 2013 Newcastle–Moore tornadic mesocyclone observed from the operational KTLX radar and an experimental phased-array radar. Analysis errors are assessed by leveraging the findings from Parts II and III. The results indicate that the dual-Doppler-analyzed VF is accurate enough to represent the true VF (although the single-Doppler-analyzed VF is not especially for nonaxisymmetric vertical motions in and around the vortex core) and thus should be useful for initializing/verifying high-resolution tornado simulations.
Abstract
A well-known bias common to many bulk microphysics schemes currently being used in cloud-resolving models is the tendency to produce excessively large reflectivity values (e.g., 40 dBZ) in the middle and upper troposphere in simulated convective systems. The Rutledge and Hobbs–based bulk microphysics scheme in the Goddard Cumulus Ensemble model is modified to reduce this bias and improve realistic aspects. Modifications include lowering the efficiencies for snow/graupel riming and snow accreting cloud ice; converting less rimed snow to graupel; allowing snow/graupel sublimation; adding rime splintering, immersion freezing, and contact nucleation; replacing the Fletcher formulation for activated ice nuclei with that of Meyers et al.; allowing for ice supersaturation in the saturation adjustment; accounting for ambient RH in the growth of cloud ice to snow; and adding/accounting for cloud ice fall speeds. In addition, size-mapping schemes for snow/graupel were added as functions of temperature and mixing ratio, lowering particle sizes at colder temperatures but allowing larger particles near the melting level and at higher mixing ratios. The modifications were applied to a weakly organized continental case and an oceanic mesoscale convective system (MCS). Strong echoes in the middle and upper troposphere were reduced in both cases. Peak reflectivities agreed well with radar for the weaker land case but, despite improvement, remained too high for the MCS. Reflectivity distributions versus height were much improved versus radar for the less organized land case but not for the MCS despite fewer excessively strong echoes aloft due to a bias toward weaker echoes at storm top.
Abstract
A well-known bias common to many bulk microphysics schemes currently being used in cloud-resolving models is the tendency to produce excessively large reflectivity values (e.g., 40 dBZ) in the middle and upper troposphere in simulated convective systems. The Rutledge and Hobbs–based bulk microphysics scheme in the Goddard Cumulus Ensemble model is modified to reduce this bias and improve realistic aspects. Modifications include lowering the efficiencies for snow/graupel riming and snow accreting cloud ice; converting less rimed snow to graupel; allowing snow/graupel sublimation; adding rime splintering, immersion freezing, and contact nucleation; replacing the Fletcher formulation for activated ice nuclei with that of Meyers et al.; allowing for ice supersaturation in the saturation adjustment; accounting for ambient RH in the growth of cloud ice to snow; and adding/accounting for cloud ice fall speeds. In addition, size-mapping schemes for snow/graupel were added as functions of temperature and mixing ratio, lowering particle sizes at colder temperatures but allowing larger particles near the melting level and at higher mixing ratios. The modifications were applied to a weakly organized continental case and an oceanic mesoscale convective system (MCS). Strong echoes in the middle and upper troposphere were reduced in both cases. Peak reflectivities agreed well with radar for the weaker land case but, despite improvement, remained too high for the MCS. Reflectivity distributions versus height were much improved versus radar for the less organized land case but not for the MCS despite fewer excessively strong echoes aloft due to a bias toward weaker echoes at storm top.
Abstract
Using the daily outgoing longwave radiation (OLR), the pentad Climate Prediction Center Merged Analysis of Precipitation (CMAP), and the 6-h Climate Forecast System Reanalysis (CFSR) dataset from 1979 to 2010, a composite analysis along with space–time wave filtering is performed to examine the linkage between the Madden–Julian oscillation (MJO) and the onset of the East Asian subtropical summer monsoon (EASSM) (over 20°–30°N, 110°–120°E). The onset of the EASSM is shown to be best characterized by the reversal of the mean meridional wind shear related to the rapid reestablishment of the South Asian high (SAH) over the southern Indochinese Peninsula in the upper troposphere. The mean date of EASMM onset is near the end of April, which is about a month earlier than the typical onset of the East Asian summer monsoon. Further analysis indicates that the onset of the EASSM and the reestablishment of SAH are often associated with the arrival of the wet phase of the tropical MJO over the central and eastern Indian Ocean.
Abstract
Using the daily outgoing longwave radiation (OLR), the pentad Climate Prediction Center Merged Analysis of Precipitation (CMAP), and the 6-h Climate Forecast System Reanalysis (CFSR) dataset from 1979 to 2010, a composite analysis along with space–time wave filtering is performed to examine the linkage between the Madden–Julian oscillation (MJO) and the onset of the East Asian subtropical summer monsoon (EASSM) (over 20°–30°N, 110°–120°E). The onset of the EASSM is shown to be best characterized by the reversal of the mean meridional wind shear related to the rapid reestablishment of the South Asian high (SAH) over the southern Indochinese Peninsula in the upper troposphere. The mean date of EASMM onset is near the end of April, which is about a month earlier than the typical onset of the East Asian summer monsoon. Further analysis indicates that the onset of the EASSM and the reestablishment of SAH are often associated with the arrival of the wet phase of the tropical MJO over the central and eastern Indian Ocean.
Abstract
This study investigates the effects of meteorological conditions and aerosols on marine stratocumulus in the southeastern Pacific using the Weather Research and Forecasting (WRF) Model. Two regimes with different temperature and moisture conditions in the finest model domain are investigated. The western regime is around 87°–79°W, while the eastern regime is around 79°–71°W. In both regimes, cloud fraction, liquid water path (LWP), cloud thickness, and precipitation show significant diurnal cycles. Cloud fraction can be 0.83 during the night and down to 0.29 during the day in the western regime. The diurnal cycles in the eastern regime have smaller amplitudes but are still very strong. Stratocumulus properties also differ in the two regimes. Compared to the western regime, the eastern regime has lower temperature, higher relative humidity, and a more coupled boundary layer, leading to higher cloud fraction (by 0.11) and lower cloud-base height. The eastern regime also has lower inversion height that causes lower cloud-top height and thinner clouds and, hence, lower LWP and less precipitation.
Cloud microphysical properties are very sensitive to aerosols in both regimes. Increasing aerosols greatly increase cloud number concentration, decrease cloud effective radius, and suppress precipitation. Cloud macrophysical properties (cloud fraction, LWP) are not sensitive to aerosols in either regime, most notably in the eastern regime where precipitation amount is less. The changes in cloud fraction and LWP caused by changes in aerosol concentrations are smaller than the changes in the diurnal cycle and the spatial variability between the two regimes.
Abstract
This study investigates the effects of meteorological conditions and aerosols on marine stratocumulus in the southeastern Pacific using the Weather Research and Forecasting (WRF) Model. Two regimes with different temperature and moisture conditions in the finest model domain are investigated. The western regime is around 87°–79°W, while the eastern regime is around 79°–71°W. In both regimes, cloud fraction, liquid water path (LWP), cloud thickness, and precipitation show significant diurnal cycles. Cloud fraction can be 0.83 during the night and down to 0.29 during the day in the western regime. The diurnal cycles in the eastern regime have smaller amplitudes but are still very strong. Stratocumulus properties also differ in the two regimes. Compared to the western regime, the eastern regime has lower temperature, higher relative humidity, and a more coupled boundary layer, leading to higher cloud fraction (by 0.11) and lower cloud-base height. The eastern regime also has lower inversion height that causes lower cloud-top height and thinner clouds and, hence, lower LWP and less precipitation.
Cloud microphysical properties are very sensitive to aerosols in both regimes. Increasing aerosols greatly increase cloud number concentration, decrease cloud effective radius, and suppress precipitation. Cloud macrophysical properties (cloud fraction, LWP) are not sensitive to aerosols in either regime, most notably in the eastern regime where precipitation amount is less. The changes in cloud fraction and LWP caused by changes in aerosol concentrations are smaller than the changes in the diurnal cycle and the spatial variability between the two regimes.
Abstract
This paper proposes a new method to properly define and accurately determine the vortex center of a model-predicted tropical cyclone (TC) from a dynamic perspective. Ideally, a dynamically determined TC vortex center should maximize the gradient wind balance or, equivalently, minimize the gradient wind imbalance measured by an energy norm over the TC vortex. In practice, however, such an energy norm cannot be used to easily and unambiguously determine the TC vortex center. An alternative yet practical approach is developed to dynamically and unambiguously define the TC vortex center. In this approach, the TC vortex core of near-solid-body rotation is modeled by a simple parametric vortex constrained by the gradient wind balance. Therefore, the modeled vortex can fit simultaneously the perturbation pressure and streamfunction of the TC vortex part (extracted from the model-predicted fields) over the TC vortex core area (within the radius of maximum tangential wind), while the misfit is measured by a properly defined cost function. Minimizing this cost function yields the desired dynamic optimality condition that can uniquely define the TC vortex center. Using this dynamic optimality condition, a new method is developed in the form of iterative least squares fit to accurately determine the TC vortex center. The new method is shown to be efficient and effective for finding the TC vortex center that accurately satisfies the dynamic optimality condition.
Abstract
This paper proposes a new method to properly define and accurately determine the vortex center of a model-predicted tropical cyclone (TC) from a dynamic perspective. Ideally, a dynamically determined TC vortex center should maximize the gradient wind balance or, equivalently, minimize the gradient wind imbalance measured by an energy norm over the TC vortex. In practice, however, such an energy norm cannot be used to easily and unambiguously determine the TC vortex center. An alternative yet practical approach is developed to dynamically and unambiguously define the TC vortex center. In this approach, the TC vortex core of near-solid-body rotation is modeled by a simple parametric vortex constrained by the gradient wind balance. Therefore, the modeled vortex can fit simultaneously the perturbation pressure and streamfunction of the TC vortex part (extracted from the model-predicted fields) over the TC vortex core area (within the radius of maximum tangential wind), while the misfit is measured by a properly defined cost function. Minimizing this cost function yields the desired dynamic optimality condition that can uniquely define the TC vortex center. Using this dynamic optimality condition, a new method is developed in the form of iterative least squares fit to accurately determine the TC vortex center. The new method is shown to be efficient and effective for finding the TC vortex center that accurately satisfies the dynamic optimality condition.
Abstract
Current cloud microphysical schemes used in cloud and mesoscale models range from simple one-moment to multimoment, multiclass to explicit bin schemes. This study details the benefits of adding a fourth ice class (frozen drops/hail) to an already improved single-moment three-class ice (cloud ice, snow, graupel) bulk microphysics scheme developed for the Goddard Cumulus Ensemble model. Besides the addition and modification of several hail processes from a bulk three-class hail scheme, further modifications were made to the three-ice processes, including allowing greater ice supersaturation and mitigating spurious evaporation/sublimation in the saturation adjustment scheme, allowing graupel/hail to transition to snow via vapor growth and hail to transition to graupel via riming, wet graupel to become hail, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved three-ice snow/graupel size-mapping schemes were adjusted to be more stable at higher mixing ratios and to increase the aggregation effect for snow. A snow density mapping was also added.
The new scheme was applied to an intense continental squall line and a moderate, loosely organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and moderate cases and were superior to earlier three-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier three-ice versions. The bin-based rain evaporation correction affected the squall line more but overall the agreement among the reflectivity distributions was unchanged. The new scheme also improved the simulated surface rain-rate histograms.
Abstract
Current cloud microphysical schemes used in cloud and mesoscale models range from simple one-moment to multimoment, multiclass to explicit bin schemes. This study details the benefits of adding a fourth ice class (frozen drops/hail) to an already improved single-moment three-class ice (cloud ice, snow, graupel) bulk microphysics scheme developed for the Goddard Cumulus Ensemble model. Besides the addition and modification of several hail processes from a bulk three-class hail scheme, further modifications were made to the three-ice processes, including allowing greater ice supersaturation and mitigating spurious evaporation/sublimation in the saturation adjustment scheme, allowing graupel/hail to transition to snow via vapor growth and hail to transition to graupel via riming, wet graupel to become hail, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved three-ice snow/graupel size-mapping schemes were adjusted to be more stable at higher mixing ratios and to increase the aggregation effect for snow. A snow density mapping was also added.
The new scheme was applied to an intense continental squall line and a moderate, loosely organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and moderate cases and were superior to earlier three-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier three-ice versions. The bin-based rain evaporation correction affected the squall line more but overall the agreement among the reflectivity distributions was unchanged. The new scheme also improved the simulated surface rain-rate histograms.
Abstract
A two-dimensional cloud-resolving model is used to study the sensitivities of two microphysical schemes, a bulk scheme and an explicit spectral bin scheme, in simulating a midlatitude summertime squall line [Preliminary Regional Experiment for Storm-Scale Operational and Research Meteorology (PRE-STORM), 10–11 June 1985]. In this first part of a two-part paper, the developing and mature stages of simulated storms are compared in detail. Some variables observed during the field campaign are also presented for validation. It is found that both schemes agree well with each other, and also with published observations and retrievals, in terms of storm structures and evolution, average storm flow patterns, pressure and temperature perturbations, and total heating profiles. The bin scheme is able to produce a much more extensive and homogeneous stratiform region, which compares better with observations.
However, instantaneous fields and high temporal resolution analyses show distinct characteristics in the two simulations. During the mature stage, the bulk simulation produces a multicell storm with convective cells embedded in its stratiform region. Its leading convection also shows a distinct life cycle (strong evolution). In contrast, the bin simulation produces a unicell storm with little temporal variation in its leading cell regeneration (weak evolution). More detailed, high-resolution observations are needed to validate and, perhaps, generalize these model results. Interactions between the cloud microphysics and storm dynamics that produce the sensitivities described here are discussed in detail in Part II of this paper.
Abstract
A two-dimensional cloud-resolving model is used to study the sensitivities of two microphysical schemes, a bulk scheme and an explicit spectral bin scheme, in simulating a midlatitude summertime squall line [Preliminary Regional Experiment for Storm-Scale Operational and Research Meteorology (PRE-STORM), 10–11 June 1985]. In this first part of a two-part paper, the developing and mature stages of simulated storms are compared in detail. Some variables observed during the field campaign are also presented for validation. It is found that both schemes agree well with each other, and also with published observations and retrievals, in terms of storm structures and evolution, average storm flow patterns, pressure and temperature perturbations, and total heating profiles. The bin scheme is able to produce a much more extensive and homogeneous stratiform region, which compares better with observations.
However, instantaneous fields and high temporal resolution analyses show distinct characteristics in the two simulations. During the mature stage, the bulk simulation produces a multicell storm with convective cells embedded in its stratiform region. Its leading convection also shows a distinct life cycle (strong evolution). In contrast, the bin simulation produces a unicell storm with little temporal variation in its leading cell regeneration (weak evolution). More detailed, high-resolution observations are needed to validate and, perhaps, generalize these model results. Interactions between the cloud microphysics and storm dynamics that produce the sensitivities described here are discussed in detail in Part II of this paper.