Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Wei Shi x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Jainn-Jong Shi, Simon Wei-Jen Chang, and Sethu Raman


The structure and dynamics of the outflow layer of tropical cyclones are studied using a three-dimensional numerical model. Weak and strong tropical cyclones are produced by the numerical model when starting from idealized initial vortices embedded in mean hurricane soundings. The quasi-steady state outflow layers of both the weak and strong tropical cyclones have similar characteristics 1) the circulations are mainly anticyclonic (except for a small region of cyclonic flow near the center) and highly asymmetric about the center, 2) the outflow layer is dominated by a narrow but elongated outflow jet, which contributes up to 50% of the angular momentum transport and 3) the air particles in the outflow jet mostly originate from the lower level, following “in-up-and-out” trajectories.

We found that there are secondary circulations around the outflow jet, very much like those associated with midlatitude westerly jet streaks. In the jet entrance region, the secondary circulation is thermally direct. That is, the ascending motion is located on the anticyclonic shear side of the jet, and the descending motion on the cyclonic shear side. There is a radially outward (perpendicular to the jet) flow above the jet and inflow below it. In the jet exit region, the secondary circulation is weaker and reversed in its direction (thermally indirect). The secondary circulations leave pronounced signatures on the relative humidity, potential vorticity, and tropopause height fields. The secondary circulation is more intense in the stronger tropical cyclone (with a stronger outflow jet) than in the weaker tropical cyclone.

The sensitivities to upper-tropospheric forcing of the outflow are tested in numerical experiments with prescribed forcings. It is found that the simulated tropical cyclone intensifies when its upper levels within a radius of approximately 500 km are accelerated and forced to be more divergent. Convection plays a key role in transforming the upper level divergence into low level convergence. In another experiment, additional regions of convection are initiated in the ascending branches of the circum-jet secondary circulations away from the inner region when the outflow jet between the radii of 500 and 1000 km is accelerated. These regions of convection become competitive with the inner core convection and eventually weaken the tropical cyclone. In both experiments, cumulus convection is the major link between the upper-level forcing and tropical cyclone's response.

Full access
Chun-Chieh Wu, Treng-Shi Huang, Wei-Peng Huang, and Kun-Hsuan Chou


Tropical Storm Bopha (2000) showed a very unusual southward course parallel to the east coast of Taiwan, mainly steered by the circulation associated with Supertyphoon Saomai (2000) to Bopha's east. The binary interaction between the two typhoons is well demonstrated by the potential vorticity (PV) diagnosis. With the use of the piecewise PV inversion, this paper quantitatively evaluates how Bopha moved southward due to the binary interaction with Saomai. A newly proposed centroid-relative track, with the position weighting based on the steering flow induced by the PV anomaly associated with the other storm, is plotted to highlight such binary interaction processes. Note that the above analysis can be well used to understand the more complicated vortex merging and interacting processes between tropical cyclones either from observational data or numerical experiments. The results also shed some light on the prediction of nearby tropical cyclones.

Full access
Na Wei, Ying Li, Da-Lin Zhang, Zi Mai, and Shi-Qi Yang


The geographical and temporal characteristics of upper-tropospheric cold low (UTCL) and their relationship to tropical cyclone (TC) track and intensity change over the western North Pacific (WNP) during 2000–12 are examined using the TC best track and global meteorological reanalysis data. An analysis of the two datasets shows that 73% of 346 TCs coexist with 345 UTCLs, and 21% of the latter coexist with TCs within an initial cutoff distance of 15°. By selecting those coexisted systems within this distance, the possible influences of UTCL on TC track and intensity change are found, depending on their relative distance and on the sectors of UTCLs where TCs are located. Results show that the impact of UTCLs on TC directional changes are statistically insignificant when averaged within the 15° radius. However, left-turning TCs within 5° distance from the UTCL center exhibit large deviated directional changes from the WNP climatology, due to the presence of highly frequent abrupt left turnings in the eastern semicircle of UTCL. The abrupt turnings of TCs are often accompanied by their slow-down movements. Results also show that TCs seem more (less) prone to intensify at early (late) development stages when interacting with UTCLs compared to the WNP climatology. Intensifying (weakening) TCs are more distributed in the southern (northern) sectors of UTCLs, with less hostile conditions for weakening within 9°–13° radial range. In addition, rapid intensifying TCs take place in the south-southwest and east-southeast sectors of UTCLs, whereas rapid weakening cases appear in the western semicircle of UTCLs due to their frequent proximity to mainland coastal regions.

Full access