Search Results

You are looking at 1 - 10 of 27 items for :

  • Author or Editor: Wei Zhao x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Wei Yang
,
Hao Wei
, and
Liang Zhao

Abstract

On the basis of measurements from an observing mooring system, the observational evidence of parametric subharmonic instability (PSI) that transfers energy from semidiurnal internal tides (ITs) to the subharmonic waves at the East China Sea continental shelf slope is presented for the first time. Although the mooring station is very close to the energetic semidiurnal IT generation site, about 76% of the observed shear variance is contained in the near-inertial band, which is found to have comparable upward- and downward-propagating energy components. Bispectra and bicoherence estimates further confirm the occurrence of PSI transferring energy from the low-mode M2 ITs (vertical wavelength of ~1000 m) to high-mode subharmonic waves (vertical wavelength of ~200 m). The calculated energy transfer rate g reveals an averaged net value of ~5 × 10−9 W kg−1. Strong temporal variation of g is found that is not exactly in phase with the semidiurnal energy flux. After looking into the local vorticity fields, it is strongly suggested that the varying background relative vorticity associated with the evolving Kuroshio has modified the efficiency of PSI at the mooring location through changing the local effective inertial frequency.

Open access
Jiwei Tian
,
Qingxuan Yang
, and
Wei Zhao

Abstract

Profiles of current velocity, temperature, and salinity were obtained in the Internal Wave and Mixing Experiment in the South China Sea (SCS), the Luzon Strait, and the North Pacific. The observations are examined for evidence of enhanced diapycnal mixing in the SCS, which reaches O(10−3 m2 s−1) in magnitude. Results from independent casts reveal that diapycnal diffusivity in the SCS and the Luzon Strait is elevated by two orders of magnitude over that of the smooth bathymetry in the North Pacific, which are typical of background values in an open ocean. The vertical distribution of diapycnal diffusivity is nonuniform in the SCS, exhibiting higher values at depths greater than about 1000 m. This result compares favorably with the direct microstructure measurements at four stations in the SCS. Velocity and density profiles are combined to estimate the internal tide energy flux generated in the Luzon Strait and directed into the SCS. The energy amounts to 10 GW, most of which is rationalized to be the potential energy source for enhanced mixing in the SCS.

Full access
Qingxuan Yang
,
Wei Zhao
,
Xinfeng Liang
, and
Jiwei Tian

Abstract

A three-dimensional distribution of turbulent mixing in the South China Sea (SCS) is obtained for the first time, using the Gregg–Henyey–Polzin parameterization and hydrographic observations from 2005 to 2012. Results indicate that turbulent mixing generally increases with depth in the SCS, reaching the order of 10−2 m2 s−1 at depth. In the horizontal direction, turbulence is more active in the northern SCS than in the south and is more active in the east than the west. Two mixing “hotspots” are identified in the bottom water of the Luzon Strait and Zhongsha Island Chain area, where diapycnal diffusivity values are around 3 × 10−2 m2 s−1. Potential mechanisms responsible for these spatial patterns are discussed, which include internal tide, bottom bathymetry, and near-inertial energy.

Full access
Qingxuan Yang
,
Wei Zhao
,
Min Li
, and
Jiwei Tian

Abstract

Turbulent mixing in the northwestern Pacific Ocean is estimated using the Gregg–Henyey–Polzin scaling and Thorpe-scale methods. The data sources are the hydrographic observations during October and November 2005. The results reveal clear spatial patterns of turbulent mixing in the study area. High-level diffusivity on the order of 10−3 m2 s−1 or larger is found within the western boundary region, where the Kuroshio flows northward. The width covered by this prominent diffusivity shows an increase from 12° to 18°N. The horizontal distribution of depth-averaged diffusivity in the top 500 m shows enhanced mixing with diffusivity of 6 × 10−3 m2 s−1 south of 9°N where the Mindanao Eddy remains a quasi-permanent feature. These two distinct patterns of diffusivity distribution suggest that the Kuroshio and the Mindanao Eddy are likely responsible for the elevated turbulent mixing in the study area.

Full access
Zhiwei Zhang
,
Wei Zhao
,
Bo Qiu
, and
Jiwei Tian

Abstract

Sheddings of Kuroshio Loop Current (KLC) eddies in the northeastern South China Sea (SCS) are investigated using mooring arrays, multiple satellite data, and data-assimilative HYCOM products. Based on altimeter sea surface heights between 1992 and 2014, a total of 19 prominent KLC eddy shedding (KLCES) events were identified, among which four events were confirmed by the concurrent moored and satellite observations. Compared to the leaping behavior of Kuroshio, KLCES is a relatively short-duration phenomenon that primarily occurs in boreal autumn and winter. The KLC and its shedding anticyclonic eddy (AE) trap a large amount of Pacific water with high temperature–salinity and low chlorophyll concentration in the upper layer. The corresponding annual-mean transport caused by KLCES reaches 0.24–0.38 Sv (1 Sv ≡ 106 m3 s−1), accounting for 6.8%–10.8% of the upper-layer Luzon Strait transport. Altimeter-based statistics show that among ~90% of the historical KLCES events, a cyclonic eddy (CE) is immediately generated behind the AE southwest of Taiwan. Both energetics and stability analyses reveal that because of its large horizontal velocity shear southwest of Taiwan, the northern branch of KLC is strongly unstable and the barotropic instability of KLC constitutes the primary generation mechanism for the CE. After CE is generated, it quickly grows and gradually migrates southward, which in turn facilitates the detachment of AE from KLC. The intrinsic relationship between KLC and CE explains well why eddy pairs are commonly observed in the region southwest of Taiwan.

Full access
Qingxuan Yang
,
Wei Zhao
,
Xinfeng Liang
,
Jihai Dong
, and
Jiwei Tian

Abstract

Direct microstructure observations across three warm mesoscale eddies were conducted in the northern South China Sea during the field experiments in July 2007, December 2013, and January 2014, respectively, along with finestructure measurements. An important finding was that turbulent mixing in the mixed layer was considerably elevated in the periphery of each of these eddies, with a mixing level 5–7 times higher than that in the eddy center. To explore the mechanism behind the high mixing level, this study carried out analyses of the horizontal wavenumber spectrum of velocities and spectral fluxes of kinetic energy. Spectral slopes showed a power law of k −2 in the eddy periphery and of k −3 in the eddy center, consistent with the result that the kinetic energy of submesoscale motion in the eddy periphery was more greatly energized than that in the center. Spectral fluxes of kinetic energy also revealed a forward energy cascade toward smaller scales at the wavelength of kilometers in the eddy periphery. This study illustrated a possible route for energy cascading from balanced mesoscale dynamics to unbalanced submesoscale behavior, which eventually furnished turbulent mixing in the upper ocean.

Full access
Chun Zhou
,
Wei Zhao
,
Jiwei Tian
,
Qingxuan Yang
, and
Tangdong Qu

Abstract

The Luzon Strait, with its deepest sills at the Bashi Channel and Luzon Trough, is the only deep connection between the Pacific Ocean and the South China Sea (SCS). To investigate the deep-water overflow through the Luzon Strait, 3.5 yr of continuous mooring observations have been conducted in the deep Bashi Channel and Luzon Trough. For the first time these observations enable us to assess the detailed variability of the deep-water overflow from the Pacific to the SCS. On average, the along-stream velocity of the overflow is at its maximum at about 120 m above the ocean bottom, reaching 19.9 ± 6.5 and 23.0 ± 11.8 cm s−1 at the central Bashi Channel and Luzon Trough, respectively. The velocity measurements can be translated to a mean volume transport for the deep-water overflow of 0.83 ± 0.46 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at the Bashi Channel and 0.88 ± 0.77 Sv at the Luzon Trough. Significant intraseasonal and seasonal variations are identified, with their dominant time scales ranging between 20 and 60 days and around 100 days. The intraseasonal variation is season dependent, with its maximum strength taking place in March–May. Deep-water eddies are believed to play a role in this intraseasonal variation. On the seasonal time scale, the deep-water overflow intensifies in late fall (October–December) and weakens in spring (March–May), corresponding well with the seasonal variation of the density difference between the Pacific and SCS, for which enhanced mixing in the deep SCS is possibly responsible.

Full access
Ruijie Ye
,
Chun Zhou
,
Wei Zhao
,
Jiwei Tian
,
Qingxuan Yang
,
Xiaodong Huang
,
Zhiwei Zhang
, and
Xiaolong Zhao

Abstract

The deep water overflow at three gaps in the Heng-Chun Ridge of the Luzon Strait is investigated based on long-term continuous mooring observations. For the first time, these observations enable us to assess the detailed structure and variability in the deep water overflow directly spilling into the South China Sea (SCS). The strong bottom-intensified flows at moorings WG2 and WG3 intrude into the deep SCS with maximum along-stream velocities of 19.2 ± 9.9 and 15.2 ± 6.8 cm s−1, respectively, at approximately 50 m above the bottom. At mooring WG1, the bottom current revealed spillage into the Luzon Trough from the SCS. The volume transport estimates are 0.73 ± 0.08 Sv at WG2 and 0.45 ± 0.02 Sv at WG3, suggesting that WG2 is the main entrance for the deep water overflow crossing the Heng-Chun Ridge into the SCS. By including the long-term observational results from previous studies, the pathway of the deep water overflow through the Luzon Strait is also presented. In addition, significant intraseasonal variations with dominant time scales of approximately 26 days at WG2 and WG3 have been revealed, which tend to be enhanced in spring and may reverse the deep water overflow.

Full access
Gong Shang
,
Zhiwei Zhang
,
Shoude Guan
,
Xiaodong Huang
,
Chun Zhou
,
Wei Zhao
, and
Jiwei Tian

Abstract

Diapycnal mixing in the South China Sea (SCS) is commonly attributed to the vertical shear variance (S2) of horizontal ocean current velocity, but the seasonal modulation of the S2 is still poorly understood due to the scarcity of long-term velocity observations. Here, this issue is explored in detail based on nearly 10-year-long ADCP velocity data from a mooring in the northern SCS. We find that the S2 in the northern SCS exhibits significant seasonal variations at both the near-surface (90–180 m) and sub-surface (180–400 m) layers, but their seasonal cycles and modulation mechanisms are quite different. For the near-surface layer, the S2 is stronger in late summer, autumn, and winter but weaker in spring and early summer, while in the sub-surface layer, it is much stronger in winter than other seasons. Further analysis suggests that in the near-surface layer, the stronger S2 in autumn and winter is primarily caused by typhoons-induced near-inertial internal waves (NIWs) and the large sub-inertial velocity shear of the baroclinic mesoscale eddies, respectively. With respect to the sub-surface layer, the enhanced wintertime S2 is primarily associated with the “inertial chimney” effect of anticyclonic eddies, trapping wind-forced downward-propagating NIWs and significantly increasing the near-inertial shear at the critical layer. The findings in this study highlight the potentially important roles of mesoscale eddies and NIWs in modulating the seasonality of upper-ocean mixing in the northern SCS. This modulation is attributed not only to the strong shear of these features but also to their interactions.

Restricted access
Zhiwei Zhang
,
Xincheng Zhang
,
Bo Qiu
,
Wei Zhao
,
Chun Zhou
,
Xiaodong Huang
, and
Jiwei Tian

Abstract

Although observational efforts have been made to detect submesoscale currents (submesoscales) in regions with deep mixed layers and/or strong mesoscale kinetic energy (KE), there have been no long-term submesoscale observations in subtropical gyres, which are characterized by moderate values of both mixed layer depths and mesoscale KE. To explore submesoscale dynamics in this oceanic regime, two nested mesoscale- and submesoscale-resolving mooring arrays were deployed in the northwestern Pacific subtropical countercurrent region during 2017–19. Based on the 2 years of data, submesoscales featuring order one Rossby numbers, large vertical velocities (with magnitude of 10–50 m day−1) and vertical heat flux, and strong ageostrophic KE are revealed in the upper 150 m. Although most of the submesoscales are surface intensified, they are found to penetrate far beneath the mixed layer. They are most energetic during strong mesoscale strain periods in the winter–spring season but are generally weak in the summer–autumn season. Energetics analysis suggests that the submesoscales receive KE from potential energy release but lose a portion of it through inverse cascade. Because this KE sink is smaller than the source term, a forward cascade must occur to balance the submesoscale KE budget, for which symmetric instability may be a candidate mechanism. By synthesizing observations and theories, we argue that the submesoscales are generated through a combination of baroclinic instability in the upper mixed and transitional layers and mesoscale strain-induced frontogenesis, among which the former should play a more dominant role in their final generation stage.

Full access