Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Wen Chen x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Wen Wang, Wei Cui, Xiaoju Wang, and Xi Chen

Abstract

The Global Land Data Assimilation System (GLDAS) is an important data source for global water cycle research. Using ground-based measurements over continental China, the monthly scale forcing data (precipitation and air temperature) during 1979–2010 and model outputs (runoff, water storage, and evapotranspiration) during 2002–10 of GLDAS models [focusing on GLDAS, version 1 (GLDAS-1)/Noah and GLDAS, version 2 (GLDAS-2)/Noah] are evaluated. Results show that GLDAS-1 has serious discontinuity issues in its forcing data, with large precipitation errors in 1996 and large temperature errors during 2000–05. While the bias correction of the GLDAS-2 precipitation data greatly improves temporal continuity and reduces the biases, it makes GLDAS-2 precipitation less correlated with observed precipitation and makes it have larger mean absolute errors than GLDAS-1 precipitation for most months over the year. GLDAS-2 temperature data are superior to GLDAS-1 temperature data temporally and spatially. The results also show that the change rates of terrestrial water storage (TWS) data by GLDAS and the Gravity Recovery and Climate Experiment (GRACE) do not match well in most areas of China, and both GLDAS-1 and GLDAS-2 are not very capable of capturing the seasonal variation in monthly TWS change observed by GRACE. Runoff is underestimated in the exorheic basins over China, and runoff simulations of GLDAS-2 are much more accurate than those of GLDAS-1 for two of the three major river basins of China investigated in this study. Evapotranspiration is overestimated in the exorheic basins in China by both GLDAS-1 and GLDAS-2, whereas the overestimation of evapotranspiration by GLDAS-2 is less than that by GLDAS-1.

Full access
Donghai Zheng, Rogier van der Velde, Zhongbo Su, Xin Wang, Jun Wen, Martijn J. Booij, Arjen Y. Hoekstra, and Yingying Chen

Abstract

This is the first part of a study focusing on evaluating the performance of the Noah land surface model (LSM) in simulating surface water and energy budgets for the high-elevation source region of the Yellow River (SRYR). A comprehensive dataset is utilized that includes in situ micrometeorological and profile soil moisture and temperature measurements as well as laboratory soil property measurements of samples collected across the SRYR. Here, the simulation of soil water flow is investigated, while Part II concentrates on the surface heat flux and soil temperature simulations. Three augmentations are proposed: 1) to include the effect of organic matter on soil hydraulic parameterization via the additivity hypothesis, 2) to implement the saturated hydraulic conductivity as an exponentially decaying function with soil depth, and 3) to modify the vertical root distribution to represent the Tibetan conditions characterized by an abundance of roots in the topsoil. The diffusivity form of Richards’ equation is further revised to allow for the simulation of soil water flow across soil layers with different hydraulic properties. Usage of organic matter for calculating the porosity and soil suction improves the agreement between the estimates and laboratory measurements, and the exponential function together with the Kozeny–Carman equation best describes the in situ . Through implementation of the modified hydraulic parameterization alone, the soil moisture underestimation in the upper soil layer under wet conditions is resolved, while the soil moisture profile dynamics are better captured by also including the modified root distribution.

Full access
Gang Chen, Kun Zhao, Guifu Zhang, Hao Huang, Su Liu, Long Wen, Zhonglin Yang, Zhengwei Yang, Lili Xu, and Wenjian Zhu

Abstract

In this study, the capability of using a C-band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD) to estimate monsoon-influenced summer rainfall during the Observation, Prediction and Analysis of Severe Convection of China (OPACC) field campaign in 2014 and 2015 in eastern China is investigated. Three different rainfall R estimators, for reflectivity at horizontal polarization [R(Z h)], for reflectivity at horizontal polarization and differential reflectivity factor [R(Z h, Z dr)], and for specific differential phase [R(K DP)], are derived from 2-yr 2DVD observations of summer precipitation systems. The radar-estimated rainfall is compared to gauge observations from eight rainfall episodes. Results show that the two polarimetric estimators, R(Z h, Z dr) and R(K DP), perform better than the traditional Z hR relation [i.e., R(Z h)]. The K DP-based estimator [i.e., R(K DP)] produces the best rainfall accumulations. The radar rainfall estimators perform differently across the three organized convective systems (mei-yu rainband, typhoon rainband, and squall line). Estimator R(Z h) overestimates rainfall in the mei-yu rainband and squall line, and R(Z h, Z dr) mitigates the overestimation in the mei-yu rainband but has a large bias in the squall line. QPE from R(K DP) is the most accurate among the three estimators, but it possesses a relatively large bias for the squall line compared to the mei-yu case. The high variability of drop size distribution (DSD) related to the precipitation microphysics in different types of rain is largely responsible for the case-dependent QPE performance using any single radar rainfall estimator. The squall line has a distinct ice-phase process with a large mean size of raindrops, while the mei-yu rainband and typhoon rainband are composed of smaller raindrops. Based on the statistical QPE error in the Z HZ DR space, a new composite rainfall estimator is constructed by combining R(Z h), R(Z h, Z dr), and R(K DP) and is proven to outperform any single rainfall estimator.

Full access
Donghai Zheng, Rogier van der Velde, Zhongbo Su, Xin Wang, Jun Wen, Martijn J. Booij, Arjen Y. Hoekstra, and Yingying Chen

Abstract

This is the second part of a study on the assessment of the Noah land surface model (LSM) in simulating surface water and energy budgets in the high-elevation source region of the Yellow River. Here, there is a focus on turbulent heat fluxes and heat transport through the soil column during the monsoon season, whereas the first part of this study deals with the soil water flow. Four augmentations are studied for mitigating the overestimation of turbulent heat flux and underestimation of soil temperature measurements: 1) the muting effect of vegetation on the thermal heat conductivity is removed from the transport of heat from the first to the second soil layer, 2) the exponential decay factor imposed on is calculated using the ratio of the leaf area index (LAI) over the green vegetation fraction (GVF), 3) Zilitinkevich’s empirical coefficient for turbulent heat transport is computed as a function of the momentum roughness length , and 4) the impact of organic matter is considered in the parameterization of the thermal heat properties. Although usage of organic matter for calculating improves the correspondence between the estimates and laboratory measurements of heat conductivities, it is shown to have a relatively small impact on the Noah LSM performance even for large organic matter contents. In contrast, the removal of the muting effect of vegetation on and the parameterization of greatly enhances the soil temperature profile simulations, whereas turbulent heat flux and surface temperature computations mostly benefit from the modified formulation. Further, the nighttime surface temperature overestimation is resolved from a coupled land–atmosphere perspective.

Full access
Wen Li Zhao, Guo Yu Qiu, Yu Jiu Xiong, Kyaw Tha Paw U, Pierre Gentine, and Bao Yu Chen

Abstract

Quantifying the uncertainties caused by resistance parameterizations is fundamental for understanding, improving, and developing terrestrial evapotranspiration (ET) models. Using high-density eddy covariance (EC) tower observations in a heterogeneous oasis in northwest China, this study evaluates the impacts of resistances on the estimation of latent heat flux (LE), the energy equivalent of ET, by comparing resistance parameterizations with different complexities under one- and two-source Penman–Monteith (PM) equations. The results showed that the mean absolute percent error (MAPE) for the LE estimates from the one- and two-source PM equations varied from 32% to 53%, and the uncertainties were caused mainly by the resistance parameterizations. Calibrating the parameters required in the resistance estimations could improve the performance of the PM equations; specifically, the MAPEs for the one-source PM equations were approximately 16%, whereas they were 38% for the two-source PM equations, emphasizing that multiple resistances result in increased uncertainties. The following conclusions were reached: 1) the empirical and biophysical parameters required in resistance estimations were responsible for the uncertainty; 2) increasingly complex resistance parameterizations resulted in greater uncertainties in LE estimates; and 3) models without resistance parameterizations exhibited reduced uncertainties in LE estimates.

Free access