Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Wesley Ebisuzaki x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Kingtse C. Mo, Muthuvel Chelliah, Marco L. Carrera, R. Wayne Higgins, and Wesley Ebisuzaki

Abstract

The large-scale atmospheric hydrologic cycle over the United States and Mexico derived from the 23-yr NCEP regional reanalysis (RR) was evaluated by comparing the RR products with satellite estimates, independent sounding data, and the operational Eta Model three-dimensional variational data assimilation (3DVAR) system (EDAS).

In general, the winter atmospheric transport and precipitation are realistic. The climatology and interannual variability of the Pacific, subtropical jet streams, and low-tropospheric moisture transport are well captured. During the summer season, the basic features and the evolution of the North American monsoon (NAM) revealed by the RR compare favorably with observations. The RR also captures the out-of-phase relationship of precipitation as well as the moisture flux convergence between the central United States and the Southwest. The RR is able to capture the zonal easterly Caribbean low-level jet (CALLJ) and the meridional southerly Great Plains low-level jet (GPLLJ). Together, they transport copious moisture from the Caribbean to the Gulf of Mexico and from the Gulf of Mexico to the Great Plains, respectively. The RR systematically overestimates the meridional southerly Gulf of California low-level jet (GCLLJ). A comparison with observations suggests that the meridional winds from the RR are too strong, with the largest differences centered over the northern Gulf of California. The strongest winds over the Gulf in the RR extend above 700 hPa, while the operational EDAS and station soundings indicate that the GCLLJ is confined to the boundary layer.

Full access
Cheng-Hsuan Lu, Masao Kanamitsu, John O. Roads, Wesley Ebisuzaki, Kenneth E. Mitchell, and Dag Lohmann

Abstract

This study compares soil moisture analyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis (R-1) and the later NCEP– Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) global reanalysis (R-2). The R-1 soil moisture is strongly controlled by nudging it to a prescribed climatology, whereas the R-2 soil moisture is adjusted according to differences between model-generated and observed precipitation. While mean soil moisture fields from R-1 and R-2 show many geographic similarities, there are some major differences. This study uses in situ observations from the Global Soil Moisture Data Bank to evaluate the two global reanalysis products. In general, R-2 does a better job of simulating interannual variations, the mean seasonal cycle, and the persistence of soil moisture, when compared to observations. However, the R-2 reanalysis does not necessarily represent observed soil moisture characteristics well in all aspects. Sometimes R-1 provides a better soil moisture analysis on monthly time scales, which is likely a consequence of the deficiencies in the R-2 surface water balance.

Full access