Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: William A. Komaromi x
- Third THORPEX International Science Symposium x
- Refine by Access: All Content x
Abstract
The response of Weather Research and Forecasting (WRF) model predictions of two tropical cyclones to perturbations in the initial conditions is investigated. Local perturbations to the vorticity field in the synoptic environment are created in features considered subjectively to be of importance to the track forecast. The rebalanced analysis is then integrated forward and compared with an unperturbed “control” simulation possessing similar errors to those in the corresponding operational model forecasts. In the first case, Typhoon Sinlaku (2008), the premature recurvature in the control simulation is found to be corrected by a variety of initial perturbations; in particular, the weakening of an upper-level low directly to its north, and the weakening of a remote short-wave trough in the midlatitude storm track. It is suggested that one or both of the short waves may have been initialized too strongly. In the second case, the forecasts for Hurricane Ike (2008) initialized 4 days prior to its landfall in Texas were not sensitive to most remote perturbations. The primary corrections to the track of Ike arose from a weakening of a midlevel ridge directly to its north, and the strengthening of a short-wave trough in the midlatitudes. For both storms, the targets selected by the ensemble transform Kalman filter (ETKF) were often, but not always, consistent with the most sensitive regions found in this study. Overall, the results can be used to retrospectively diagnose features in which the initial conditions require improvement, in order to improve forecasts of tropical cyclone track.
Abstract
The response of Weather Research and Forecasting (WRF) model predictions of two tropical cyclones to perturbations in the initial conditions is investigated. Local perturbations to the vorticity field in the synoptic environment are created in features considered subjectively to be of importance to the track forecast. The rebalanced analysis is then integrated forward and compared with an unperturbed “control” simulation possessing similar errors to those in the corresponding operational model forecasts. In the first case, Typhoon Sinlaku (2008), the premature recurvature in the control simulation is found to be corrected by a variety of initial perturbations; in particular, the weakening of an upper-level low directly to its north, and the weakening of a remote short-wave trough in the midlatitude storm track. It is suggested that one or both of the short waves may have been initialized too strongly. In the second case, the forecasts for Hurricane Ike (2008) initialized 4 days prior to its landfall in Texas were not sensitive to most remote perturbations. The primary corrections to the track of Ike arose from a weakening of a midlevel ridge directly to its north, and the strengthening of a short-wave trough in the midlatitudes. For both storms, the targets selected by the ensemble transform Kalman filter (ETKF) were often, but not always, consistent with the most sensitive regions found in this study. Overall, the results can be used to retrospectively diagnose features in which the initial conditions require improvement, in order to improve forecasts of tropical cyclone track.