Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: William A. Komaromi x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
William A. Komaromi

Abstract

Composite dropsonde profiles are analyzed for developing and nondeveloping tropical waves in an attempt to improve the understanding of tropical cyclogenesis. These tropical waves were sampled by 25 reconnaissance missions during the 2010 Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field campaign. Comparisons are made between mean profiles of temperature, mixing ratio, relative humidity, radial and tangential winds, relative vorticity, and virtual convective available potential energy (CAPE) for genesis and nongenesis cases. Genesis soundings are further analyzed in temporal progression to investigate whether significant changes in the thermodynamic or wind fields occur during the transition from tropical wave to tropical cyclone.

Significant results include the development of positive temperature anomalies from 500 to 200 hPa 2 days prior to genesis in developing waves. This is not observed in the nongenesis mean. Progressive mesoscale moistening of the column is observed within 150 km of the center of circulation prior to genesis. The genesis composite is found to be significantly moister than the nongenesis composite at the middle levels, while comparatively drier at low levels, suggesting that dry air is more detrimental to genesis when located at the middle levels. Time-varying tangential wind profiles reveal an initial delay in intensification, followed by an increase in organization 24 h pregenesis. The vertical evolution of relative vorticity, in addition to a warm-over-cold thermal structure, is more consistent with a top-down than a bottom-up genesis mechanism. Last, CAPE values are much greater for nongenesis than genesis profiles, indicating that greater instability does not necessarily favor genesis.

Full access
William A. Komaromi
and
James D. Doyle

Abstract

The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and intensity of the TC. In a simulation that does not have a trough, environmental inertial stability is dominated by Coriolis, and outflow remains preferentially directed equatorward throughout the simulation. In the presence of a trough, negative storm-relative tangential wind in the base of the trough reduces the inertial stability such that the outflow shifts from equatorward to poleward. This interaction results in a ~24-h period of enhanced upper-level divergence coincident with intensification of the TC. Sensitivity tests reveal that if the TC is too far from the trough, favorable interaction does not occur. If the TC is too close to the trough, the storm weakens because of enhanced vertical wind shear. Only when the relative distance between the TC and the trough is 0.2–0.3 times the wavelength of the trough in x and 0.8–1.2 times the amplitude of the trough in y does favorable interaction and TC intensification occur. However, stochastic effects make it difficult to isolate the intensity change associated directly with the trough interaction. Outflow is found to be predominantly ageostrophic at small radii and deflects to the right (in the Northern Hemisphere) since it is unbalanced. The outflow becomes predominantly geostrophic at larger radii but not before a rightward deflection has already occurred. This finding sheds light on why the outflow accelerates toward but generally never reaches the region of lowest inertial stability.

Full access