Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: William E. Johns x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
John R. Gerhardt
and
William E. Gordon

The propagation of radio waves above about 30 megacycles is seriously affected by certain weather phenomena. The meteorological aspects of this effect for a particular case are considered and a forecasting technique proposed.

Full access
Mark E. Weber
,
John Y. N. Cho
,
Jeffrey S. Herd
,
James M. Flavin
,
William E. Benner
, and
Garth S. Torok

The U.S. Government operates seven distinct radar networks, providing weather and aircraft surveillance for public weather services, air traffic control, and homeland defense. In this paper, we describe a next-generation multimission phased-array radar (MPAR) concept that could provide enhanced weather and aircraft surveillance services with potentially lower life cycle costs than multiple single-function radar networks. We describe current U.S. national weather and aircraft surveillance radar networks and show that by reducing overlapping airspace coverage, MPAR could reduce the total number of radars required by approximately one-third. A key finding is that weather surveillance requirements dictate the core parameters of a multimission radar—airspace coverage, aperture size, radiated power, and angular resolution. Aircraft surveillance capability can be added to a phased array weather radar at low incremental cost because the agile, electronically steered beam would allow the radar to achieve the much more rapid scan update rates needed for aircraft volume search missions, and additionally to support track modes for individual aircraft targets. We describe an MPAR system design that includes multiple transmit-receive channels and a highly digitized active phased array to generate independently steered beam clusters for weather, aircraft volume search, and aircraft track modes. For each of these modes, we discuss surveillance capability improvements that would be realized relative to today's radars. The Federal Aviation Administration (FAA) has initiated the development of an MPAR “preprototype” that will demonstrate critical subsystem technologies and multimission operational capabilities. Initial subsystem designs have provided a solid basis for estimating MPAR costs for comparison with existing, mechanically scanned operational surveillance radars.

Full access
Chad M. Gravelle
,
John R. Mecikalski
,
William E. Line
,
Kristopher M. Bedka
,
Ralph A. Petersen
,
Justin M. Sieglaff
,
Geoffrey T. Stano
, and
Steven J. Goodman

Abstract

With the launch of the Geostationary Operational Environmental Satellite–R (GOES-R) series in 2016, there will be continuity of observations for the current GOES system operating over the Western Hemisphere. The GOES-R Proving Ground was established in 2008 to help prepare satellite user communities for the enhanced capabilities of GOES-R, including new instruments, imagery, and products that will have increased spectral, spatial, and temporal resolution. This is accomplished through demonstration and evaluation of proxy products that use current GOES data, higher-resolution data provided by polar-orbiting satellites, and model-derived synthetic satellite imagery. The GOES-R demonstration products presented here, made available to forecasters in near–real time (within 20 min) via the GOES-R Proving Ground, include the 0–9-h NearCast model, 0–1-h convective initiation probabilities, convective cloud-top cooling, overshooting top detection, and a pseudo–Geostationary Lightning Mapper total lightning tendency diagnostic. These products are designed to assist in identifying areas of increasing convective instability, pre-radar echo cumulus cloud growth preceding thunderstorm formation, storm updraft intensity, and potential storm severity derived from lightning trends. In turn, they provide the warning forecaster with improved situational awareness and short-term predictive information that enhance their ability to monitor atmospheric conditions preceding and associated with the development of deep convection, a time period that typically occurs between the issuance of National Weather Service (NWS) Storm Prediction Center convective watches and convective storm warnings issued by NWS forecast offices. This paper will focus on how this GOES-R satellite convective toolkit could have been used by warning forecasters to enhance near-storm environment analysis and the warning-decision-making process prior to and during the 20 May 2013 Moore, Oklahoma, tornado event.

Full access
Wendell A. Nuss
,
John ML Bane
,
William T. Thompson
,
Teddy Holt
,
Clive E. Dorman
,
F. Martin Ralph
,
Richard Rotunno
,
Joseph B. Klemp
,
William C. Skamarock
,
Roger M. Samelson
,
Audrey M. Rogerson
,
Chris Reason
, and
Peter Jackson

Coastally trapped wind reversals along the U.S. west coast, which are often accompanied by a northward surge of fog or stratus, are an important warm-season forecast problem due to their impact on coastal maritime activities and airport operations. Previous studies identified several possible dynamic mechanisms that could be responsible for producing these events, yet observational and modeling limitations at the time left these competing interpretations open for debate. In an effort to improve our physical understanding, and ultimately the prediction, of these events, the Office of Naval Research sponsored an Accelerated Research Initiative in Coastal Meteorology during the years 1993–98 to study these and other related coastal meteorological phenomena. This effort included two field programs to study coastally trapped disturbances as well as numerous modeling studies to explore key dynamic mechanisms. This paper describes the various efforts that occurred under this program to provide an advancement in our understanding of these disturbances. While not all issues have been solved, the synoptic and mesoscale aspects of these events are considerably better understood.

Full access
Paul A. Hirschberg
,
Elliot Abrams
,
Andrea Bleistein
,
William Bua
,
Luca Delle Monache
,
Thomas W. Dulong
,
John E. Gaynor
,
Bob Glahn
,
Thomas M. Hamill
,
James A. Hansen
,
Douglas C. Hilderbrand
,
Ross N. Hoffman
,
Betty Hearn Morrow
,
Brenda Philips
,
John Sokich
, and
Neil Stuart

The American Meteorological Society (AMS) Weather and Climate Enterprise Strategic Implementation Plan for Generating and Communicating Forecast Uncertainty (the Plan) is summarized. The Plan (available on the AMS website at www.ametsoc.org/boardpges/cwce/docs/BEC/ACUF/2011-02-20-ACUF-Final-Report.pdf) is based on and intended to provide a foundation for implementing recent recommendations regarding forecast uncertainty by the National Research Council (NRC), AMS, and World Meteorological Organization. It defines a vision, strategic goals, roles and respon- sibilities, and an implementation road map to guide the weather and climate enterprise (the Enterprise) toward routinely providing the nation with comprehensive, skillful, reliable, and useful information about the uncertainty of weather, water, and climate (hydrometeorological) forecasts. Examples are provided describing how hydrometeorological forecast uncertainty information can improve decisions and outcomes in various socioeconomic areas. The implementation road map defines objectives and tasks that the four sectors comprising the Enterprise (i.e., government, industry, academia, and nongovernmental organizations) should work on in partnership to meet four key, interrelated strategic goals: 1) understand social and physical science aspects of forecast uncertainty; 2) communicate forecast uncertainty information effectively and collaborate with users to assist them in their decision making; 3) generate forecast uncertainty data, products, services, and information; and 4) enable research, development, and operations with necessary information technology and other infrastructure. The Plan endorses the NRC recommendation that the National Oceanic and Atmospheric Administration and, in particular, the National Weather Service, should take the lead in motivating and organizing Enterprise resources and expertise in order to reach the Plan's vision and goals and shift the nation successfully toward a greater understanding and use of forecast uncertainty in decision making.

Full access
David J. Diner
,
Thomas P. Ackerman
,
Theodore L. Anderson
,
Jens Bösenberg
,
Amy J. Braverman
,
Robert J. Charlson
,
William D. Collins
,
Roger Davies
,
Brent N. Holben
,
Chris A . Hostetler
,
Ralph A. Kahn
,
John V. Martonchik
,
Robert T. Menzies
,
Mark A. Miller
,
John A. Ogren
,
Joyce E. Penner
,
Philip J. Rasch
,
Stephen E. Schwartz
,
John H. Seinfeld
,
Graeme L. Stephens
,
Omar Torres
,
Larry D. Travis
,
Bruce A . Wielicki
, and
Bin Yu

Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the longterm benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, interagency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality.

Full access
John T. Sullivan
,
Timothy Berkoff
,
Guillaume Gronoff
,
Travis Knepp
,
Margaret Pippin
,
Danette Allen
,
Laurence Twigg
,
Robert Swap
,
Maria Tzortziou
,
Anne M. Thompson
,
Ryan M. Stauffer
,
Glenn M. Wolfe
,
James Flynn
,
Sally E. Pusede
,
Laura M. Judd
,
William Moore
,
Barry D. Baker
,
Jay Al-Saadi
, and
Thomas J. McGee

Abstract

Coastal regions have historically represented a significant challenge for air quality investigations because of water–land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants “over land” and “over water” to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land–water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency’s Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

Open access
William P. Kustas
,
Martha C. Anderson
,
Joseph G. Alfieri
,
Kyle Knipper
,
Alfonso Torres-Rua
,
Christopher K. Parry
,
Hector Nieto
,
Nurit Agam
,
William A. White
,
Feng Gao
,
Lynn McKee
,
John H. Prueger
,
Lawrence E. Hipps
,
Sebastian Los
,
Maria Mar Alsina
,
Luis Sanchez
,
Brent Sams
,
Nick Dokoozlian
,
Mac McKee
,
Scott Jones
,
Yun Yang
,
Tiffany G. Wilson
,
Fangni Lei
,
Andrew McElrone
,
Josh L. Heitman
,
Adam M. Howard
,
Kirk Post
,
Forrest Melton
, and
Christopher Hain

Abstract

Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.

Full access
M. Susan Lozier
,
Sheldon Bacon
,
Amy S. Bower
,
Stuart A. Cunningham
,
M. Femke de Jong
,
Laura de Steur
,
Brad deYoung
,
Jürgen Fischer
,
Stefan F. Gary
,
Blair J. W. Greenan
,
Patrick Heimbach
,
Naomi P. Holliday
,
Loïc Houpert
,
Mark E. Inall
,
William E. Johns
,
Helen L. Johnson
,
Johannes Karstensen
,
Feili Li
,
Xiaopei Lin
,
Neill Mackay
,
David P. Marshall
,
Herlé Mercier
,
Paul G. Myers
,
Robert S. Pickart
,
Helen R. Pillar
,
Fiammetta Straneo
,
Virginie Thierry
,
Robert A. Weller
,
Richard G. Williams
,
Chris Wilson
,
Jiayan Yang
,
Jian Zhao
, and
Jan D. Zika

Abstract

For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.

Full access
Armin Sorooshian
,
Bruce Anderson
,
Susanne E. Bauer
,
Rachel A. Braun
,
Brian Cairns
,
Ewan Crosbie
,
Hossein Dadashazar
,
Glenn Diskin
,
Richard Ferrare
,
Richard C. Flagan
,
Johnathan Hair
,
Chris Hostetler
,
Haflidi H. Jonsson
,
Mary M. Kleb
,
Hongyu Liu
,
Alexander B. MacDonald
,
Allison McComiskey
,
Richard Moore
,
David Painemal
,
Lynn M. Russell
,
John H. Seinfeld
,
Michael Shook
,
William L. Smith Jr
,
Kenneth Thornhill
,
George Tselioudis
,
Hailong Wang
,
Xubin Zeng
,
Bo Zhang
,
Luke Ziemba
, and
Paquita Zuidema

Abstract

We report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.

Full access