Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: William S. Olson x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Arthur Y. Hou
,
Sara Q. Zhang
,
Arlindo M. da Silva
,
William S. Olson
,
Christian D. Kummerow
, and
Joanne Simpson

As a follow-on to the Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration in the United States, the National Space Development Agency of Japan, and the European Space Agency are considering a satellite mission to measure the global rainfall. The plan envisions an improved TRMM-like satellite and a constellation of eight satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-h intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and two Special Sensor Microwave/Imager (SSM/I) instruments.

Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the Tropics. It is shown that assimilating the 6-h-averaged TMI and SSM/I surface rain rate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper-tropospheric moisture in the analysis produced by the Goddard Earth Observing System Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System instrument and brightness temperature observations by the Television Infrared Observational Satellite Operational Vertical Sounder instruments.

Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the Tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the Tropics.

These results were obtained using a variational procedure based on a 6-h time integration of a column model of moist physics with prescribed dynamical and other physical tendencies. The procedure estimates moisture tendency corrections at observation locations by minimizing the least square differences between the observed TPW and rain rates and those generated by the column model over a 6-h analysis window. These tendency corrections are then applied during the assimilation cycle to compensate for errors arising from both initial conditions and deficiencies in model physics. Our results point to the importance of addressing deficiencies in model physics in assimilating data types such as precipitation, for which the forward model based on convective parameterizations may have significant systematic errors.

This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of four-dimensional global datasets for climate analysis and weather forecasting applications.

Full access
Nathaniel S. Winstead
,
Brian Colle
,
Nicholas Bond
,
George Young
,
Joseph Olson
,
Kenneth Loescher
,
Frank Monaldo
,
Donald Thompson
, and
William Pichel

The steeply rising coastal terrain of southeast Alaska can produce a wide variety of terrain-induced flows such as barrier jets, gap flows, and downslope wind storms. This study uses a combination of satellite remote sensing, field observations, and modeling to improve our understanding of the dynamics of these flows. After examining several thousand synthetic aperture radar (SAR) high-resolution wind speed images over the Gulf of Alaska, several subclasses of barrier jets were identified that do not fit the current conceptual model of barrier jet development. This conceptual model consists of an acceleration and turning of the ambient cross-barrier flow into the along-barrier direction when the ambient low-level flow is blocked by terrain; however, the SAR imagery showed many barrier jet cases with significant flow variability in the along-coast direction as well as evidence for the influence of cold, dry continental air exiting the gaps in coastal terrain. A subclass of jets has been observed where the transition from the coastal to the offshore flow is abrupt.

The results from these climatological studies have motivated modeling studies of selected events as well as field observations from the Southeast Alaska Regional Jets (SARJET) experiment field campaign in the Gulf of Alaska during fall of 2004. This paper will highlight preliminary results obtained during SARJET, which collected in situ measurements of barrier jets and gap flows using the University of Wyoming's King Air research aircraft.

Full access

Satellite Data Simulator Unit

A Multisensor, Multispectral Satellite Simulator Package

Hirohiko Masunaga
,
Toshihisa Matsui
,
Wei-kuo Tao
,
Arthur Y. Hou
,
Christian D. Kummerow
,
Teruyuki Nakajima
,
Peter Bauer
,
William S. Olson
,
Miho Sekiguchi
, and
Takashi Y. Nakajima
Full access
Gail Skofronick-Jackson
,
Walter A. Petersen
,
Wesley Berg
,
Chris Kidd
,
Erich F. Stocker
,
Dalia B. Kirschbaum
,
Ramesh Kakar
,
Scott A. Braun
,
George J. Huffman
,
Toshio Iguchi
,
Pierre E. Kirstetter
,
Christian Kummerow
,
Robert Meneghini
,
Riko Oki
,
William S. Olson
,
Yukari N. Takayabu
,
Kinji Furukawa
, and
Thomas Wilheit

Abstract

Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.

Full access
James M. Wilczak
,
Mark Stoelinga
,
Larry K. Berg
,
Justin Sharp
,
Caroline Draxl
,
Katherine McCaffrey
,
Robert M. Banta
,
Laura Bianco
,
Irina Djalalova
,
Julie K. Lundquist
,
Paytsar Muradyan
,
Aditya Choukulkar
,
Laura Leo
,
Timothy Bonin
,
Yelena Pichugina
,
Richard Eckman
,
Charles N. Long
,
Kathleen Lantz
,
Rochelle P. Worsnop
,
Jim Bickford
,
Nicola Bodini
,
Duli Chand
,
Andrew Clifton
,
Joel Cline
,
David R. Cook
,
Harindra J. S. Fernando
,
Katja Friedrich
,
Raghavendra Krishnamurthy
,
Melinda Marquis
,
Jim McCaa
,
Joseph B. Olson
,
Sebastian Otarola-Bustos
,
George Scott
,
William J. Shaw
,
Sonia Wharton
, and
Allen B. White

Abstract

The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km × 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described.

Full access
Dennis Baldocchi
,
Eva Falge
,
Lianhong Gu
,
Richard Olson
,
David Hollinger
,
Steve Running
,
Peter Anthoni
,
Ch. Bernhofer
,
Kenneth Davis
,
Robert Evans
,
Jose Fuentes
,
Allen Goldstein
,
Gabriel Katul
,
Beverly Law
,
Xuhui Lee
,
Yadvinder Malhi
,
Tilden Meyers
,
William Munger
,
Walt Oechel
,
K. T. Paw U
,
Kim Pilegaard
,
H. P. Schmid
,
Riccardo Valentini
,
Shashi Verma
,
Timo Vesala
,
Kell Wilson
, and
Steve Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m−2 day−1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

Full access