Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Xianan Jiang x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Xianan Jiang
,
Duane E. Waliser
,
Peter B. Gibson
,
Gang Chen
, and
Weina Guan

Abstract

Despite an urgent demand for reliable seasonal prediction of precipitation in California (CA) due to the recent recurrent and severe drought conditions, our predictive skill for CA winter precipitation remains limited. October hindcasts by the coupled dynamical models typically show a correlation skill of about 0.3 for CA winter (November–March) precipitation. In this study, an attempt is made to understand the underlying processes that limit seasonal prediction skill for CA winter precipitation. It is found that only about 25% of interannual variability of CA winter precipitation can be attributed to influences by El Niño–Southern Oscillation (ENSO). Instead, the year-to-year CA winter precipitation variability is primarily due to circulation anomalies independent from ENSO, featuring a circulation center over the west coast United States as a portion of a short Rossby wave train pattern over the North Pacific. Analyses suggest that dynamical models show nearly no skill in predicting these ENSO-independent circulation anomalies, thus leading to limited predictive skill for CA winter precipitation. Low predictability of these ENSO-independent circulation anomalies is further demonstrated by a large ensemble of atmospheric-only climate model simulations. While low predictability of the ENSO-independent circulation anomalies could be due to chaotic internal atmospheric processes over the mid- to high latitudes, possible underexploited predictability sources for CA precipitation in models are also discussed. This study pinpoints an urgent need for improved understanding of the formation mechanisms of ENSO-independent circulation anomalies over the U.S. West Coast for a breakthrough in seasonal prediction of CA winter precipitation.

Free access
Eric D. Maloney
,
Andrew Gettelman
,
Yi Ming
,
J. David Neelin
,
Daniel Barrie
,
Annarita Mariotti
,
C.-C. Chen
,
Danielle R. B. Coleman
,
Yi-Hung Kuo
,
Bohar Singh
,
H. Annamalai
,
Alexis Berg
,
James F. Booth
,
Suzana J. Camargo
,
Aiguo Dai
,
Alex Gonzalez
,
Jan Hafner
,
Xianan Jiang
,
Xianwen Jing
,
Daehyun Kim
,
Arun Kumar
,
Yumin Moon
,
Catherine M. Naud
,
Adam H. Sobel
,
Kentaroh Suzuki
,
Fuchang Wang
,
Junhong Wang
,
Allison A. Wing
,
Xiaobiao Xu
, and
Ming Zhao

Abstract

Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers’ model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.

Full access