Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Xiao-Ming Hu x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Shang-Min Long
,
Shang-Ping Xie
,
Yan Du
,
Qinyu Liu
,
Xiao-Tong Zheng
,
Gang Huang
,
Kai-Ming Hu
, and
Jun Ying

Abstract

The 2015 Paris Agreement proposed targets to limit global-mean surface temperature (GMST) rise well below 2°C relative to preindustrial level by 2100, requiring a cease in the radiative forcing (RF) increase in the near future. In response to changing RF, the deep ocean responds slowly (ocean slow response), in contrast to the fast ocean mixed layer adjustment. The role of the ocean slow response under low warming targets is investigated using representative concentration pathway (RCP) 2.6 simulations from phase 5 of the Coupled Model Intercomparison Project. In RCP2.6, the deep ocean continues to warm while RF decreases after reaching a peak. The deep ocean warming helps to shape the trajectories of GMST and fuels persistent thermosteric sea level rise. A diagnostic method is used to decompose further changes after the RF peak into a slow warming component under constant peak RF and a cooling component due to the decreasing RF. Specifically, the slow warming component amounts to 0.2°C (0.6°C) by 2100 (2300), raising the hurdle for achieving the low warming targets. When RF declines, the deep ocean warming takes place in all basins but is the most pronounced in the Southern Ocean and Atlantic Ocean where surface heat uptake is the largest. The climatology and change of meridional overturning circulation are both important for the deep ocean warming. To keep the GMST rise at a low level, substantial decrease in RF is required to offset the warming effect from the ocean slow response.

Free access
Jianping Guo
,
Xinyan Chen
,
Tianning Su
,
Lin Liu
,
Youtong Zheng
,
Dandan Chen
,
Jian Li
,
Hui Xu
,
Yanmin Lv
,
Bingfang He
,
Yuan Li
,
Xiao-Ming Hu
,
Aijun Ding
, and
Panmao Zhai

Abstract

The variability of the lower tropospheric temperature inversion (TI) across China remains poorly understood. Using seven years’ worth of high-resolution radiosonde measurements at 120 sites, we compile the climatology of lower tropospheric TI in terms of frequency, intensity, and depth during the period from 2011 to 2017. The TI generally exhibits strong seasonal and geographic dependencies. Particularly, the TI frequency is found to be high in winter and low in summer, likely due to the strong aerosol radiative effect in winter. The frequency of the surface-based inversion (SBI) exhibits a “west low, east high” pattern at 0800 Beijing time (BJT), which then switches to “west high, east low” at 2000 BJT. Both the summertime SBI and elevated inversion (EI) reach a peak at 0800 BJT and a trough at 1400 BJT. Interestingly, the maximum wintertime EI frequency occurs over Southeast China (SEC) rather than over the North China Plain (NCP), likely attributable to the combination of the heating effect of black carbon (BC) originating from the NCP, along with the strong subsidence and trade inversion in SEC. Correlation analyses between local meteorology and TI indicate that larger lower tropospheric stability (LTS) favors more frequent and stronger TIs, whereas the stronger EI under smaller LTS conditions (unstable atmosphere) is more associated with subsidence rather than BC. Overall, the spatial pattern of the lower tropospheric TI and its variability in China are mainly controlled by three factors: local meteorology, large-scale subsidence, and BC-induced heating. These findings help shed some light on the magnitude, spatial distribution, and underlying mechanisms of the lower tropospheric TI variation in China.

Open access