Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Xiaojun Yuan x
  • Connecting the Tropics to the Polar Regions x
  • Refine by Access: All Content x
Clear All Modify Search
M. Nuncio
and
Xiaojun Yuan

Abstract

This study explores the impact of the Indian Ocean dipole (IOD) on the Southern Hemisphere sea ice variability. Singular value decomposition (SVD) of September–November sea ice concentration and sea surface temperature (SST) anomalies reveals patterns of El Niño–Southern Oscillation (ENSO) in the Pacific and the IOD in the equatorial Indian Ocean. The relative importance of the IOD’s impact on sea ice in the Pacific sector of Antarctica is difficult to assess for two reasons: 1) ENSO generates larger anomalies in the Pacific and Weddell Sea and 2) many of the positive (negative) IODs co-occur with El Niño (La Niña). West of the Ross Sea, sea ice growth can be attributed to the negative heat fluxes associated with cold meridional flow between high and low pressure cells generated by the effects of the IOD. However, the locations of these positive and negative pressure anomaly centers tend to appear north of the sea ice zone during combined ENSO–IOD events, reducing the influence of the IOD on sea ice. The IOD influence is at a maximum in the region west of the Ross Sea. When ENSO is removed, sea ice in the Indian Ocean (near 60°E) increases because of cold outflows west of low pressure centers while sea ice near 90°E decreases because of the warm advection west of a high pressure center located south of Australia.

Full access
Xiaojun Yuan
,
Michael R. Kaplan
, and
Mark A. Cane

Abstract

This paper summarizes advances in research on tropical–polar teleconnections, made roughly over the last decade. Elucidating El Niño–Southern Oscillation (ENSO) impacts on high latitudes has remained an important focus along different lines of inquiry. Tropical to polar connections have also been discovered at the intraseasonal time scale, associated with Madden–Julian oscillations (MJOs). On the time scale of decades, changes in MJO phases can result in temperature and sea ice changes in the polar regions of both hemispheres. Moreover, the long-term changes in SST of the western tropical Pacific, tropical Atlantic, and North Atlantic Ocean have been linked to the rapid winter warming around the Antarctic Peninsula, while SST changes in the central tropical Pacific have been linked to the warming in West Antarctica. Rossby wave trains emanating from the tropics remain the key mechanism for tropical and polar teleconnections from intraseasonal to decadal time scales. ENSO-related tropical SST anomalies affect higher-latitude annular modes by modulating mean zonal winds in both the subtropics and midlatitudes. Recent studies have also revealed the details of the interactions between the Rossby wave and atmospheric circulations in high latitudes. We also review some of the hypothesized connections between the tropics and poles in the past, including times when the climate was fundamentally different from present day especially given a larger-than-present-day global cryosphere. In addition to atmospheric Rossby waves forced from the tropics, large polar temperature changes and amplification, in part associated with variability in orbital configuration and solar irradiance, affected the low–high-latitude connections.

Full access