Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Xin-Zhong Liang x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Xin-Zhong Liang
,
Min Xu
,
Xing Yuan
,
Tiejun Ling
,
Hyun I. Choi
,
Feng Zhang
,
Ligang Chen
,
Shuyan Liu
,
Shenjian Su
,
Fengxue Qiao
,
Yuxiang He
,
Julian X. L. Wang
,
Kenneth E. Kunkel
,
Wei Gao
,
Everette Joseph
,
Vernon Morris
,
Tsann-Wang Yu
,
Jimy Dudhia
, and
John Michalakes

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model.

This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Full access
Xin-Zhong Liang
,
Drew Gower
,
Jennifer A. Kennedy
,
Melissa Kenney
,
Michael C. Maddox
,
Michael Gerst
,
Guillermo Balboa
,
Talon Becker
,
Ximing Cai
,
Roger Elmore
,
Wei Gao
,
Yufeng He
,
Kang Liang
,
Shane Lotton
,
Leena Malayil
,
Megan L. Matthews
,
Alison M. Meadow
,
Christopher M. U. Neale
,
Greg Newman
,
Amy Rebecca Sapkota
,
Sanghoon Shin
,
Jonathan Straube
,
Chao Sun
,
You Wu
,
Yun Yang
, and
Xuesong Zhang

Abstract

Climate change presents huge challenges to the already-complex decisions faced by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, educators, and stakeholders is developing a climate decision support Dashboard for Agricultural Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive information. DAWN’s goal is to provide credible, usable information to support decisions by creating infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated approach to 1) engage stakeholders to coproduce a decision support and information delivery system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity and environmental quality; and 4) integrate research and extension into experiential, transdisciplinary education. This article presents DAWN’s framework for integrating climate–agriculture research, extension, and education to bridge science and service. We also present key challenges to the creation and delivery of decision support, specifically in infrastructure development, coproduction and trust building with stakeholders, product design, effective communication, and moving tools toward use.

Open access
Yongkang Xue
,
Ismaila Diallo
,
Aaron A. Boone
,
Tandong Yao
,
Yang Zhang
,
Xubin Zeng
,
J. David Neelin
,
William K. M. Lau
,
Yan Pan
,
Ye Liu
,
Xiaoduo Pan
,
Qi Tang
,
Peter J. van Oevelen
,
Tomonori Sato
,
Myung-Seo Koo
,
Stefano Materia
,
Chunxiang Shi
,
Jing Yang
,
Constantin Ardilouze
,
Zhaohui Lin
,
Xin Qi
,
Tetsu Nakamura
,
Subodh K. Saha
,
Retish Senan
,
Yuhei Takaya
,
Hailan Wang
,
Hongliang Zhang
,
Mei Zhao
,
Hara Prasad Nayak
,
Qiuyu Chen
,
Jinming Feng
,
Michael A. Brunke
,
Tianyi Fan
,
Songyou Hong
,
Paulo Nobre
,
Daniele Peano
,
Yi Qin
,
Frederic Vitart
,
Shaocheng Xie
,
Yanling Zhan
,
Daniel Klocke
,
Ruby Leung
,
Xin Li
,
Michael Ek
,
Weidong Guo
,
Gianpaolo Balsamo
,
Qing Bao
,
Sin Chan Chou
,
Patricia de Rosnay
,
Yanluan Lin
,
Yuejian Zhu
,
Yun Qian
,
Ping Zhao
,
Jianping Tang
,
Xin-Zhong Liang
,
Jinkyu Hong
,
Duoying Ji
,
Zhenming Ji
,
Yuan Qiu
,
Shiori Sugimoto
,
Weicai Wang
,
Kun Yang
, and
Miao Yu

Abstract

Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface ­temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations.

Free access