Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Xudong Liang x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Yi Luo
,
Xudong Liang
,
Gang Wang
, and
Zheng Cao

Abstract

In this study, we propose a new way to obtain motion vectors using the integrating velocity–azimuth process (IVAP) method for extrapolation nowcasting. Traditional tracking methods rely on tracking radar echoes of a few time slices. In contrast, the IVAP method does not depend on the past variation of radar echoes; it only needs the radar echo and radial velocity observations at the latest time. To demonstrate it is practical to use IVAP-retrieved winds to extrapolate radar echoes, we carried out nowcasting experiments using the IVAP method, and compared these results with the results using a traditional method, namely, the tracking radar echoes by correlation (TREC) method. Comparison based on a series of large-scale mature rainfall cases showed that the IVAP method has similar accuracy to that of the TREC method. In addition, the IVAP method provides the vertical wind profile that can be used to anticipate storm type and motion deviations.

Full access
Xudong Liang
,
Yanxin Xie
,
Jinfang Yin
,
Yi Luo
,
Dan Yao
, and
Feng Li

Abstract

Dealiasing is a common procedure in radar radial velocity quality control. Generally, there are two dealiasing steps: a continuity check and a reference check. In this paper, a modified version that uses azimuthal variance of radial velocity is introduced based on the integrating velocity–azimuth process (IVAP) method, referred to as the V-IVAP method. The new method can retrieve the averaged winds within a local area instead of averaged wind within a full range circle by the velocity–azimuth display (VAD) or the modified VAD method. The V-IVAP method is insensitive to the alias of the velocity, and provides a better way to produce reference velocities for a reference check. Instead of a continuity check, we use the IVAP method for a fine reference check because of its high-frequency filtering function. Then a dealiasing procedure with two steps of reference check is developed. The performance of the automatic dealiasing procedure is demonstrated by retrieving the wind field of a tornado. Using the dealiased radar velocities, the retrieved winds reveal a clear mesoscale vortex. A test based on radar network observations also has shown that the two-step dealiasing procedure based on V-IVAP and IVAP methods is reliable.

Full access