Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Yi Huang x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Kevin Bloxam
and
Yi Huang

Abstract

Sudden stratospheric warmings (SSWs) are impressive events that occur in the winter hemisphere’s polar stratosphere and are capable of producing temperature anomalies upward of +50 K within a matter of days. While much work has been dedicated toward determining how SSWs occur and their ability to interact with the underlying troposphere, one underexplored aspect is the role of radiation, especially during the recovery phase of SSWs. Using a radiative transfer model and a heating rate analysis for distinct layers of the stratosphere averaged over the 60°–90°N polar region, this paper accounts for the radiative contribution to the removal of the anomalous temperatures associated with SSWs. In total 17 events are investigated over the 1979–2016 period. This paper reveals that in the absence of dynamical heating following major SSWs, longwave radiative cooling dominates and often results in a strong negative temperature anomaly. The polar winter stratospheric temperature change driven by the radiative cooling is characterized by an exponential decay of temperature with an increasing e-folding time of 5.7 ± 2.0 to 14.6 ± 4.4 days from the upper to middle stratosphere. The variability of the radiative relaxation rates among the SSWs was determined to be most impacted by the initial temperature of the stratosphere and the combined dynamic and solar heating rates following the onset of the events. We also found that trace-gas anomalies have little impact on the radiative heating rates and the temperature evolution during the SSWs in the mid- to upper stratosphere.

Full access
Jing Feng
and
Yi Huang

Abstract

Accurate integration of directional radiance shows that the conventional diffusivity-factor approximation with a constant diffusivity angle results in an overestimation of the outgoing longwave radiation (OLR) in the window band and an underestimation in the absorption band. We propose an analytical estimation of a spectrally dependent diffusivity angle for clear-sky spectral OLR, considering actual atmospheric conditions and realistic optical path geometry. Beginning with the plane-parallel geometry, we present a new, physical explanation of the conventional diffusivity angle that applies to the gas absorption bands and derives an alternative solution for the window bands. Then a correction scheme is developed to account for the impact of the spherical Earth geometry on the diffusivity angle. The proposed method achieves higher accuracy, reducing biases to generally less than 2% in all spectral regions.

Full access
Yi-Xian Li
,
J. David Neelin
,
Yi-Hung Kuo
,
Huang-Hsiung Hsu
, and
Jia-Yuh Yu

Abstract

In convective quasi-equilibrium theory, tropical tropospheric temperature perturbations are expected to follow vertical profiles constrained by convection, referred to as A-profiles here, often approximated by perturbations of moist adiabats. Differences between an idealized A-profile based on moist-static energy conservation and temperature perturbations derived from entraining and nonentraining parcel computations are modest under convective conditions—deep convection mostly occurs when the lower troposphere is close to saturation, thus minimizing the impact of entrainment on tropospheric temperature. Simple calculations with pseudoadiabatic perturbations about the observed profile thus provide useful baseline A-profiles. The first EOF mode of tropospheric temperature (TEOF1) from the ERA-Interim and AIRS retrievals below the level of neutral buoyancy (LNB) is compared with these A-profiles. The TEOF1 profiles with high LNB, typically above 400 hPa, yield high vertical spatial correlation (∼0.9) with A-profiles, indicating that tropospheric temperature perturbations tend to be consistent with the quasi-equilibrium assumption where the environment is favorable to deep convection. Lower correlation tends to occur in regions with low climatological LNB, less favorable to deep convection. Excluding temperature profiles with low LNB significantly increases the tropical mean vertical spatial correlation. The temperature perturbations near LNB exhibit negative deviations from the A-profiles—the convective cold-top phenomenon—with greater deviation for higher LNB. In regions with lower correlation, the deviation from A-profile shows an S-like shape beneath 600 hPa, usually accompanied by a drier lower troposphere. These findings are robust across a wide range of time scales from daily to monthly, although the vertical spatial correlation and TEOF1 explained variance tend to decrease on short time scales.

Open access
Yi-Hsuan Huang
,
Michael T. Montgomery
, and
Chun-Chieh Wu

Abstract

In Part I of this study, the association between the secondary eyewall formation (SEF) and the broadening of the outer swirling wind in Typhoon Sinlaku (2008) was documented. The findings from Part I help lay the groundwork for the application of a newly proposed intensification paradigm to SEF. Part II presents a new model for SEF that utilizes this new paradigm and its axisymmetric view of the dynamics.

The findings point to a sequence of structure changes that occur in the vortex’s outer-core region, culminating in SEF. The sequence begins with a broadening of the tangential winds, followed by an increase of the corresponding boundary layer (BL) inflow and an enhancement of convergence in the BL where the secondary eyewall forms. The narrow region of strong BL convergence is associated with the generation of supergradient winds in and just above the BL that acts to rapidly decelerate inflow there. The progressive strengthening of BL inflow and the generation of an effective adverse radial force therein leads to an eruption of air from the BL to support convection outside the primary eyewall in a favorable thermodynamic/kinematic environment.

The results suggest that the unbalanced response in the BL serves as an important mechanism for initiating and sustaining a ring of deep convection in a narrow supergradient wind zone outside the primary eyewall. This progressive BL control on SEF suggests that the BL scheme and its coupling to the interior flow need to be adequately represented in numerical models to improve the prediction of SEF timing and preferred location.

Full access
Chun-Chieh Wu
,
Tsung-Han Li
, and
Yi-Hsuan Huang

Abstract

Observations have documented typhoons experiencing pronounced track deflection before making landfall in Taiwan. In this study, idealized full-physics model experiments are conducted to assess the orographic influence on tropical cyclone (TC) track. An intense and westward-moving TC is simulated to approach the bell-shaped terrain imitating the Taiwan topography. Sensitivity numerical experiments are carried out to evaluate the topographic effect under different flow regimes and parameters, such as TC intensity, terrain height, and incident angle of the TC movement toward the topography. All the presented simulated storms experience southward track deflection prior to landfall. Different from the mechanism related to the channeling-effect-induced low-level northerly jet as suggested in previous studies, this study indicates the leading role of the northerly asymmetric flow in the midtroposphere in causing the southward deflection of the simulated TC tracks. The midtropospheric northerly asymmetric flow forms as a result of the wind speeds restrained east of the storm center and winds enhanced/maintained west of the storm center. In all, this study highlights a new mechanism that contributes to the terrain-induced southward track deflection in addition to the traditional channeling effect.

Full access
Yi-Hsuan Huang
,
Chun-Chieh Wu
, and
Michael T. Montgomery

Abstract

This is a follow-up work to two prior studies examining secondary eyewall formation (SEF) in Typhoon Sinlaku (2008). This study shows that, in the SEF region, the majority of the elevated winds are supergradient. About two-thirds of the rapid increase in tangential wind tendencies immediately prior to SEF are attributed to agradient wind tendencies. This suggests the importance of nonlinear, unbalanced dynamical processes in SEF in addition to the classical axisymmetric balanced response to forcings of heating and momentum. In the SEF region, analyses show two distinct responsible processes for the increasing azimuthal tangential wind in two vertical intervals. Within the boundary inflow layer, the competing effect between the mean radial influx of absolute vorticity and deceleration caused by surface friction and subgrid diffusion yields a secondary maximum of positive tendency. Analyses further demonstrate the major impact of the mean radial influx of absolute vorticity on SEF. Above the boundary inflow layer, the vertical advection acts to vertically extend the tangential wind jet via the lofting of the enhanced tangential momentum farther upward. The roles of the nonlinear unbalanced dynamics in these two processes are discussed in this paper. From a Lagrangian perspective, the persistently increasing agradient force outweighs the frictional loss, effectively decelerating boundary layer inflowing air across the SEF region. This explains the sharpening of the radial gradient of boundary layer inflow, which is shown to be responsible for the buildup of a zone with concentrated boundary layer convergence. The previously proposed unbalanced dynamical pathway to SEF is elaborated upon and supported by the current results and discussion.

Full access
Guanghua Chen
,
Chun-Chieh Wu
, and
Yi-Hsuan Huang

Abstract

The effects of convective and stratiform diabatic processes in the near-core region on tropical cyclone (TC) structure and intensity change are examined by artificially modifying the convective and stratiform heating/cooling between 40- and 80-km radii. Sensitivity experiments show that the absence of convective heating in the annulus can weaken TC intensity and decrease the inner-core size. The increased convective heating generates a thick and polygonal eyewall, while the storm intensifies more gently than that in the control run. The removal of stratiform heating can slow down TC intensification with a moderate intensity, whereas the doubling of stratiform heating has little effect on the TC evolution compared to the control run. The halved stratiform cooling facilitates TC rapid intensification and a compact inner-core structure with the spiral rainbands largely suppressed. With the stratiform cooling doubled, the storm terminates intensification and eventually develops a double-eyewall-like structure accompanied by the significantly outward expansion of the inner-core size. The removal of both stratiform heating and cooling generates the strongest storm with the structure and intensity similar to those in the experiment with stratiform cooling halved. When both stratiform heating and cooling are doubled, the storm first decays rapidly, followed by the vertical connection of the updrafts at mid- to upper levels in the near-core region and at lower levels in the collapsed eyewall, which reinvigorates the eyewall convection but with a large outward slope.

Full access
Michael T. Montgomery
,
Sergio F. Abarca
,
Roger K. Smith
,
Chun-Chieh Wu
, and
Yi-Hsuan Huang
Full access
Xiangfeng Hu
,
Hao Huang
,
Haixia Xiao
,
Yi Cui
,
Feng Lv
,
Liwei Zhao
, and
Xueshuai Ji

Abstract

Microphysical structures and processes in a case of precipitating stratiform clouds in North China on 21 May 2018 are investigated using joint observations from an aircraft and an X-band polarimetric radar. The results show that there are enhancements in differential reflectivity (Z DR) and specific differential phase (K DP) above the 7-km altitude, consistent with the existence of dendrites and platelike ice crystals. The horizontal reflectivity factor (ZH ) increases and Z DR decreases downward above the melting layer (ML), due to the prevalent aggregation process, which is confirmed by the downward increasing volume-weighted mean diameter (Dm ) and decreasing total number concentration (Nt ) observed by the aircraft. Within the ML, the concentration of median-sized particles (2–5 mm) decreases rapidly downward due to the melting process. Within approximately the top 2/3 of the ML, the melting particles’ mean and maximum sizes increase, demonstrating the dominance of the aggregation process. This causes the enhancements of ZH and Z DR within the radar bright band together with the increase in the dielectric constant. Within the bottom 1/3 of the ML, the breakup process is responsible for the decreasing Dm and increasing Nt observed by the aircraft. Below the ML, the measurements by the polarimetric radar and the aircraft only show slight variance with altitude, indicating the near balance between microphysical processes favored by the nearly saturated air. The results of the microphysics in the stratiform case would help improve the microphysical parameterization of numerical modeling in the future.

Free access