Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Yihong Duan x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Yihong Duan
,
Jiandong Gong
,
Jun Du
,
Martin Charron
,
Jing Chen
,
Guo Deng
,
Geoff DiMego
,
Masahiro Hara
,
Masaru Kunii
,
Xiaoli Li
,
Yinglin Li
,
Kazuo Saito
,
Hiromu Seko
,
Yong Wang
, and
Christoph Wittmann

The Beijing 2008 Olympics Research and Development Project (B08RDP), initiated in 2004 under the World Meteorological Organization (WMO) World Weather Research Programme (WWRP), undertook the research and development of mesoscale ensemble prediction systems (MEPSs) and their application to weather forecast support during the Beijing Olympic Games. Six MEPSs from six countries, representing the state-of-the-art regional EPSs with near-real-time capabilities and emphasizing on the 6–36-h forecast lead times, participated in the project.

The background, objectives, and implementation of B08RDP, as well as the six MEPSs, are reviewed. The accomplishments are summarized, which include 1) providing value-added service to the Olympic Games, 2) advancing MEPS-related research, 3) accelerating the transition from research to operations, and 4) training forecasters in utilizing forecast uncertainty products. The B08RDP has fulfilled its research (MEPS development) and demonstration (value-added service) purposes. The research conducted covers the areas of verification, examining the value of MEPS relative to other numerical weather prediction (NWP) systems, combining multimodel or multicenter ensembles, bias correction, ensemble perturbations [initial condition (IC), lateral boundary condition (LBC), land surface IC, and model physics], downscaling, forecast applications, data assimilation, and storm-scale ensemble modeling. Seven scientific issues important to MEPS have been identified. It is recognized that the daily use of forecast uncertainty information by forecasters remains a challenge. Development of forecaster-friendly products and training activities should be a long-term effort and needs to be continuously enhanced.

The B08RDP dataset is also a valuable asset to the research community. The experience gained in international collaboration, organization, and implementation of a multination regional EPS for a common goal and to address common scientific issues can be shared by the ongoing projects The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble—Limited Area Models (TIGGE-LAM) and North American Ensemble Forecast System—Limited Area Models (NAEFS-LAM).

Full access
Yihong Duan
,
Qilin Wan
,
Jian Huang
,
Kun Zhao
,
Hui Yu
,
Yuqing Wang
,
Dajun Zhao
,
Jianing Feng
,
Jie Tang
,
Peiyan Chen
,
Xiaoqin Lu
,
Yuan Wang
,
Jianyin Liang
,
Liguang Wu
,
Xiaopeng Cui
,
Jing Xu
, and
Pak-Wai Chan

Abstract

Landfalling tropical cyclones (TCs) often experience drastic changes in their motion, intensity, and structure due to complex multiscale interactions among atmospheric processes and among the coastal ocean, land, and atmosphere. Because of the lack of comprehensive data and low capability of numerical models, understanding of and ability to predict landfalling TCs are still limited. A 10-yr key research project on landfalling TCs was initiated and launched in 2009 in China. The project has been jointly supported by the China Ministry of Science and Technology, China Meteorological Administration (CMA), Ministry of Education, and Chinese Academy of Sciences. Its mission is to enhance understanding of landfalling TC processes and improve forecasting skills on track, intensity, and distributions of strong winds and precipitation in landfalling TCs. This article provides an overview of the project, together with highlights of some new findings and new technical developments, as well as planned future efforts.

Full access
Mark Govett
,
Bubacar Bah
,
Peter Bauer
,
Dominique Berod
,
Veronique Bouchet
,
Susanna Corti
,
Chris Davis
,
Yihong Duan
,
Tim Graham
,
Yuki Honda
,
Adrian Hines
,
Michel Jean
,
Junishi Ishida
,
Bryan Lawrence
,
Jian Li
,
Juerg Luterbacher
,
Chiasi Muroi
,
Kris Rowe
,
Martin Schultz
,
Martin Visbeck
, and
Keith Williams

Abstract

The emergence of exascale computing and artificial intelligence offer tremendous potential to significantly advance earth system prediction capabilities. However, enormous challenges must be overcome to adapt models and prediction systems to use these new technologies effectively. A recent WMO report on exascale computing recommends “urgency in dedicating efforts and attention to disruptions associated with evolving computing technologies that will be increasingly difficult to overcome, threatening continued advancements in weather and climate prediction capabilities. Further, the explosive growth in data from observations, model and ensemble output, and post processing threatens to overwhelm the ability to deliver timely, accurate, and precise information needed for decision making. AI offers untapped opportunities to alter how models are developed, observations are processed, and predictions are analyzed and extracted for decision-making. Given the extraordinarily high cost of computing, growing complexity of prediction systems and increasingly unmanageable amount of data being produced and consumed, these challenges are rapidly becoming too large for any single institution or country to handle. This paper describes key technical, and budgetary challenges, identifies gaps and ways to address them, and makes a number of recommendations.

Open access