Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Yizhou Zhuang x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Yizhou Zhuang
,
Amir Erfanian
, and
Rong Fu

Abstract

Although the influence of sea surface temperature (SST) forcing and large-scale teleconnection on summer droughts over the U.S. Great Plains has been suggested for decades, the underlying mechanisms are still not fully understood. Here we show a significant correlation between low-level moisture condition over the U.S. Southwest in spring and rainfall variability over the Great Plains in summer. Such a connection is due to the strong influence of the Southwest dryness on the zonal moisture advection to the Great Plains from spring to summer. This advection is an important contributor for the moisture deficit during spring to early summer, and so can initiate warm season drought over the Great Plains. In other words, the well-documented influence of cold season Pacific SST on the Southwest rainfall in spring, and the influence of the latter on the zonal moisture advection to the Great Plains from spring to summer, allows the Pacific climate variability in winter and spring to explain over 35% of the variance of the summer precipitation over the Great Plains, more than that can be explained by the previous documented west Pacific–North America (WPNA) teleconnection forced by tropical Pacific SST in early summer. Thus, this remote land surface feedback due to the Southwest dryness can potentially improve the predictability of summer precipitation and drought onsets over the Great Plains.

Full access
Jiaying Zhang
,
Kaiyu Guan
,
Rong Fu
,
Bin Peng
,
Siyu Zhao
, and
Yizhou Zhuang

Abstract

Seasonal climate forecasts have socioeconomic value, and the quality of the forecasts is important to various societal applications. Here we evaluate seasonal forecasts of three climate variables, vapor pressure deficit (VPD), temperature, and precipitation, from operational dynamical models over the major cropland areas of South America; analyze their predictability from global and local circulation patterns, such as El Niño–Southern Oscillation (ENSO); and attribute the source of prediction errors. We show that the European Centre for Medium-Range Weather Forecasts (ECMWF) model has the highest quality among the models evaluated. Forecasts of VPD and temperature have better agreement with observations (average Pearson correlation of 0.65 and 0.70, respectively, among all months for 1-month-lead predictions from the ECMWF) than those of precipitation (0.40). Forecasts degrade with increasing lead times, and the degradation is due to the following reasons: 1) the failure of capturing local circulation patterns and capturing the linkages between the patterns and local climate; and 2) the overestimation of ENSO’s influence on regions not affected by ENSO. For regions affected by ENSO, forecasts of the three climate variables as well as their extremes are well predicted up to 6 months ahead, providing valuable lead time for risk preparedness and management. The results provide useful information for further development of dynamical models and for those who use seasonal climate forecasts for planning and management.

Significance Statement

Seasonal climate forecasts have socioeconomic value, and the quality of the forecasts is important to their applications. This study evaluated the quality of monthly forecasts of three important climate variables that are critical to agricultural management, risk assessment, and natural hazards warning. The findings provide useful information for those who use seasonal climate forecasts for planning and management. This study also analyzed the predictability of the climate variables and the attribution of prediction errors and thus provides insights for understanding models’ varying performance and for future improvement of seasonal climate forecasts from dynamical models.

Restricted access