Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Yongjie Huang x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Ben Yang
Yaocun Zhang
Yun Qian
Tongwen Wu
Anning Huang
, and
Yongjie Fang


In this study, the authors apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM, version 2.1 (BCC_AGCM2.1). The results herein show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, including increased precipitation over the equatorial Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic mei-yu distribution over eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It is shown that simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño–decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs over ocean in observations) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific Ocean, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean–western Pacific teleconnection as observed. The model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

Full access