Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Zac Flamig x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Abstract
In meteorological investigations, the reference variable or “ground truth” typically comes from an instrument. This study uses human observations of surface precipitation types to evaluate the same variables that are estimated from an automated algorithm. The NOAA/National Severe Storms Laboratory’s Multi-Radar Multi-Sensor (MRMS) system relies primarily on observations from the Next Generation Radar (NEXRAD) network and model analyses from the Earth System Research Laboratory’s Rapid Refresh (RAP) system. Each hour, MRMS yields quantitative precipitation estimates and surface precipitation types as rain or snow. To date, the surface precipitation type product has received little attention beyond case studies. This study uses precipitation type reports collected by citizen scientists who have contributed observations to the meteorological Phenomena Identification Near the Ground (mPING) project. Citizen scientist reports of rain and snow during the winter season from 19 December 2012 to 30 April 2013 across the United States are compared to the MRMS precipitation type products. Results show that while the mPING reports have a limited spatial distribution (they are concentrated in urban areas), they yield similar critical success indexes of MRMS precipitation types in different cities. The remaining disagreement is attributed to an MRMS algorithmic deficiency of yielding too much rain, as opposed to biases in the mPING reports. The study also shows reduced detectability of snow compared to rain, which is attributed to lack of sensitivity at S band and the shallow nature of winter storms. Some suggestions are provided for improving the MRMS precipitation type algorithm based on these findings.
Abstract
In meteorological investigations, the reference variable or “ground truth” typically comes from an instrument. This study uses human observations of surface precipitation types to evaluate the same variables that are estimated from an automated algorithm. The NOAA/National Severe Storms Laboratory’s Multi-Radar Multi-Sensor (MRMS) system relies primarily on observations from the Next Generation Radar (NEXRAD) network and model analyses from the Earth System Research Laboratory’s Rapid Refresh (RAP) system. Each hour, MRMS yields quantitative precipitation estimates and surface precipitation types as rain or snow. To date, the surface precipitation type product has received little attention beyond case studies. This study uses precipitation type reports collected by citizen scientists who have contributed observations to the meteorological Phenomena Identification Near the Ground (mPING) project. Citizen scientist reports of rain and snow during the winter season from 19 December 2012 to 30 April 2013 across the United States are compared to the MRMS precipitation type products. Results show that while the mPING reports have a limited spatial distribution (they are concentrated in urban areas), they yield similar critical success indexes of MRMS precipitation types in different cities. The remaining disagreement is attributed to an MRMS algorithmic deficiency of yielding too much rain, as opposed to biases in the mPING reports. The study also shows reduced detectability of snow compared to rain, which is attributed to lack of sensitivity at S band and the shallow nature of winter storms. Some suggestions are provided for improving the MRMS precipitation type algorithm based on these findings.
The objective of the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project is to prototype new hydrometeorologic techniques to address a critical NOAA service gap: routine total water level predictions for tidally influenced watersheds. Since February 2000, the project has focused on developing a coupled modeling system to accurately account for water at all locations in a coastal watershed by exchanging data between atmospheric, hydrologic, and hydrodynamic models. These simulations account for the quantity of water associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface.
Within this project, CI-FLOW addresses the following goals: i) apply advanced weather and oceanographic monitoring and prediction techniques to the coastal environment; ii) prototype an automated hydrometeorologic data collection and prediction system; iii) facilitate interdisciplinary and multiorganizational collaborations; and iv) enhance techniques and technologies that improve actionable hydrologic/hydrodynamic information to reduce the impacts of coastal flooding. Results are presented for Hurricane Isabel (2003), Hurricane Earl (2010), and Tropical Storm Nicole (2010) for the Tar–Pamlico and Neuse River basins of North Carolina. This area was chosen, in part, because of the tremendous damage inflicted by Hurricanes Dennis and Floyd (1999). The vision is to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.
The objective of the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project is to prototype new hydrometeorologic techniques to address a critical NOAA service gap: routine total water level predictions for tidally influenced watersheds. Since February 2000, the project has focused on developing a coupled modeling system to accurately account for water at all locations in a coastal watershed by exchanging data between atmospheric, hydrologic, and hydrodynamic models. These simulations account for the quantity of water associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface.
Within this project, CI-FLOW addresses the following goals: i) apply advanced weather and oceanographic monitoring and prediction techniques to the coastal environment; ii) prototype an automated hydrometeorologic data collection and prediction system; iii) facilitate interdisciplinary and multiorganizational collaborations; and iv) enhance techniques and technologies that improve actionable hydrologic/hydrodynamic information to reduce the impacts of coastal flooding. Results are presented for Hurricane Isabel (2003), Hurricane Earl (2010), and Tropical Storm Nicole (2010) for the Tar–Pamlico and Neuse River basins of North Carolina. This area was chosen, in part, because of the tremendous damage inflicted by Hurricanes Dennis and Floyd (1999). The vision is to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.