Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zhaohui Li x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Qi Li, Zhaohui Chen, Shoude Guan, Haiyuan Yang, Zhao Jing, Yongzheng Liu, Bingrong Sun, and Lixin Wu


Shipboard observations of upper-ocean current, temperature/salinity, and turbulent dissipation rate were used to study near-inertial waves (NIWs) and turbulent diapycnal mixing in cold-core eddy (CE) and warm-core eddy (WE) in the Kuroshio Extension (KE) region. The two eddies shed from the KE were energetic, with the maximum velocity exceeding 1 m s−1 and relative vorticity magnitude as high as 0.6 f. The Mode Regression Method was proposed to extract NIWs from the shipboard-ADCP velocities. The NIW amplitudes were 0.15 and 0.3 m s−1 in the CE and WE, respectively, and their constant phase lines were nearly slanted along the heaving isopycnals. In the WE, the NIWs were trapped in the negative vorticity core and amplified at the eddy base (at 350–650 m), which was consistent with the “inertial chimney” effect documented in existing literature. Outstanding NIWs in the background wavefield were also observed inside the positive vorticity core of the CE, despite their lower strength and shallower residence (above 350 m) compared to the counterparts in the WE. Particularly, the near-inertial kinetic energy efficiently propagated downward and amplified below the surface layer in both eddies, leading to an elevated turbulent dissipation rate of up to 10−7 W kg−1. In addition, bidirectional energy exchanges between the NIWs and mesoscale balanced flow occurred during NIWs’ downward propagation. The present study provides observational evidence for the enhanced downward NIW propagation by mesoscale eddies, which has significant implications for parameterizing the wind-driven diapycnal mixing in the eddying ocean.

Restricted access
Dunxin Hu, Shijian Hu, Lixin Wu, Lei Li, Linlin Zhang, Xinyuan Diao, Zhaohui Chen, Yuanlong Li, Fan Wang, and Dongliang Yuan


The Luzon Undercurrent (LUC) was discovered about 20 years ago by geostrophic calculation from conductivity–temperature–depth (CTD) data. But it was not directly measured until 2010. From November 2010 to July 2011, the LUC was first directly measured by acoustic Doppler current profiler (ADCP) from a subsurface mooring at 18.0°N, 122.7°E to the east of Luzon Island. A number of new features of the LUC were identified from the measurements of the current. Its depth covers a range from 400 m to deeper than 700 m. The observed maximum velocity of the LUC, centered at about 650 m, could exceed 27.5 cm s−1, four times stronger than the one derived from previous geostrophic calculation with hydrographic data. According to the time series available, the seasonality of the LUC strength is in winter > summer > spring. Significant intraseasonal variability (ISV; 70–80 days) of the LUC is exposed. Evidence exists to suggest that a large portion of the intraseasonal variability in the LUC is related to the westward propagation of mesoscale eddies from the east of the mooring site.

Full access